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ABSTRACT

The combined bending-torsion fatigue reliability research ma­

chines, conceived, designed, and built at The University of Arizona
~

are described. Three such machines are presently in operation at

The University of Arizona. The calibration of these machines is

presented in depth. Fatigue data generated with these machines for

SAE 4340 steel grooved specimens subjected to reversed bending and

~teady torque loading are given. The data reduction procedure is

presented. Finally, some comments are made about notch sensitivity

and stress concentration as applied to combined fatigue.
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I SUMMARY

The calibration effort and data reduction techniques for the

Combined Bending-Torsion Fatigue Reliability Research Machines is

presented here. Because of the complexity of the problem of deter­

mining the true bending stress and the true shear stress present in

the groov~ of the test specimen, eight distinct calibrations had to

be performed on each machine. A description of each calibration

test, the test setup, the procedure, the data, a~d the data reduc­

tion are given for each calibration test. Then the need for each

test is presented in Section IV. E where a calibration flow chart was

developed to aid in the data reduction procedure. Specific cali­

bration parameters for'.each machine were determined and their needs

demonstrated. The calibration equations in bending were shown to
\ '. . . .

" /be '
,,

N N' G R,cal a cal= ---:::-:::------,-- <1 I
E R

gage
out

TH

and the calibration equations in torque were shown to be

<1trueGR=
r 13s

.. l,
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... -. -,.- .."~ -- -=- ....

';_':,' "t\':.. '": "';~-.-:-.:.~. ':.~."'::-~ _'0 ' ...

- - In -add~t~on, the S:tClt~c stress concentration factor for the notched

U;~sp'ec{~e'~" was' :det-ermined to be 1.28.

:C:"~<'~~-For data reduction, the calibration flow chart was generalized
c..~ _._~ ...-,- ,', .- " - - '. . .

·,··arid'computerized. The data reduction program as well as all the

"'='datagenerated to date are presented. S~mple calculations for the

"data reduction technique are given. Cycles-to-failure data reduc­

~:tion is not included in this' report and is the subject of another

"report.

The results of the data reduction are briefly presented in the

form of S-N curves.

Lastly, the problem of notch sensitivity is discussed and a

proposal made.

_.-"..-.'-'~-"'" ~
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II INTRODUCTION

Prior to this research effort, the basic methodology for

designing reliability into mechanical components by consideration

of the interf~rence of their stress-strength distributions was dis-.'. .

cussed by Kececioglu and Cormier (I)". Included in this paper was

a discussion of Monte Carlo techniques for determining stress and

strength distributions, given the distributions of the factors

affecting them.

Freudenthal (2) wrote a paper in which structural unreliabil­

ity was considered to be the probability, or risk, of failure. The

safety factor was shown to be a distribution function which is the

quotient of the strength to the stress, where both strength and

stress are considered as statistical variables. Freudenthal,

Garrelts, and Shinozuka (3) prepared a comprehensive report, along

the same lines, which discussed in more detail the mathematical

techniques,required, the appropriate statistical distributions .~

involved, and problems which remained to be solved. Several exam~

pIe problems in structural reliability were worked out, an exten­

sive bibliography was given. These efforts concentrated on simple

fatigue and structural reliability.

The Batteile Memorial Institute and its Mechanicai Reliability

Research Center presented studies (4, 5) which described some of

the fundamental problems in mechanical reliability and suggested

methods for their solution.

Mittenbergs (4) discussed the fundamental aspects of reliabil­

ity engineering as they pertain to mechanical devices. He stated

that the failure modes of ~echanical elements were basically:

ic
Numbers in parentheses refer to those under References.



1. Deformation.

2. Fracture.
i
I

4

3. . Instabili ty .

He also asserted that many factors combi~e to determine the

reliability of a mechanical part under such failure modes. The

interaction of strength and load distributions· was discussed. The

Sixth Progress Report of the Mechanical Reliability Research Center

(5) summarized a two-year research effort. This extensive research

effort contained a thorough discussio~ of mechanical reliability,

and attempted to quantify the relationships of various factors on

.such phenomena as creep and fatigue. An extensive bibl~ography was

included.

The· lIT Research. Institute conducted·a program in "Methods for

Prediction of Electro:"Mechimical Systems Reliability" (6). The

p~ogram was concerned with three major areas:

l.The study of prime mechanisms of failure in mechani-....
cal design. Specific items included fatigue, surface. . \

. fat.igu~, .wear, creep,. and corros ion. ~vd i(-..
. 2 i . The application of failure mechanism and design \lY)c.~d

information for the reliability evaluation of speci- . 0
ficmechanical pa~ts. Parts included were gears,

bearings, springs, and shafts.

3. The determination of mechanical .system reliability in

terms of individual part reliability figures.

A paper by G.Reethof, M.J. Bratt, and G. W. Weber of the

Large Jet Engine Department, General Electric Company, entitled "A

Mod~l for Time Varying and Interfering Stress-Strength Probability

Degradation" (7), provided a computer approach towards.the solution

of the time variant strength distribution case.

An extension of this study was made by Lipson~ et al (28), who

conducted an extensive literature survey,. gathered available fatigue
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data, and developed an analysis of the stress-strength interference

theory using the Weibull distribution extensively.
. . i

The above works provided some interesting and valuable contri-

butions to the problem of designing specified reliabilities into

mechanical components. However; a number of important aspects of

.. this problem remained to be investigated. The problem of time­

variant stress andstr~ngth distributions needed further treatment.

The effects of various factors, which are themselves distributions,

on the distributions of the failure-governing stress and strength

had yet to be fully explored; The development of a formal engineer-.

ing design met~odol.ogy for designing mechanicai components had yet

to be developed. Finally, much of the work .in mechanical reliabil­

ity theory suffered from a lack of statistically adequate data, due

to a lack of test results on a large number of identical mechanical

components.

The purpose of tl:J.e current invest.igation is to fill in the

gaps in the above-mentioned areas, with th~ following specific

objectives:

. 1. Develop a formal engineering methodology for design­

·.ing into ~echanical comporients, subjected to combined­

·stress fatigue wh~ch involves time-dependent ~trength

distributions, specified reliabilities.

2. Explore the methods of functions of random variables

as applied to structural reliability.

3. Explore the methods available for determining failure­

governing stress and strength distributions and

develop new ones.

4. Explore the methods available for calculating the

reliability once the failure-governing stress and

str~ngth distributions are known and develop new o~es.

5. Develop and fabricate fatigue testing machines for

reliability research, so that the explored and

i
i·
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developed methodologies described above can be demon­

strated.

·6. Pursue a test program with a statistically signifi­

cant number of test specimens to obtain data from

which these methodologie·s can be demonstrated .

. A literature survey was made in order to locate fatigue test­

ing machines to generate the desired, combined bending-torsion

·fatigue data. References on Fatigue was surveyed from 1955 to

1963. The only paper of interest was. the "Symposium on Large

Fatigue Testing Machines and their Results ll (9).· No testing

machines capable of handling combined steady torque and reversed

bending moment were found in th·e paper. ' Other ref~rences (10, 11)

were reviewed; information concern~ng combined-stress fatigue

machines was not found.

The Proceedings of the Society for Experimental Stress Analy­

sis (12) from 1945 to 1960 and Experimental ,Mechanics (13) from

1961 to December 1965 were reviewed in an attempt to locate a com­

bined steady torque and reversed bending moment testing machine.

Several fatigue.test~ngmachines were found, but only one was of

direct interest to the NASA contract, a testing m~chine built by

Mabie and Gjesdahl (14). This machine used the four-square prin-

. ciple for applyi,ng a steady torque while the rotating beam principle

was used to produce the bending moment.

The four-square principle is not a new principle for develop­

.ing steady torque. Industrial corporations, such as gear manufac-

turers, speed reducer manufacturers, and coupling manufacturers,

all use this principle to evaluate their products (15).

In the Mabie-Gjesdahl Machine this principle was used to

develop a maximum steady torque of 6,000 in-lb; however, the

machine was only operated at a maximum of about 2,000 in-lb of

torque (14, p. ,86). At this loading the machine produced a high

pitch whine (16), a result of the pitch line velocity of the spur
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gears being 3,000 to 4,000 feet per minute (17).

The pre-set torque could not be maintained. The steady

torque, four-square principle was coupled with a reversed bending

moment, as shown in Figure 1. The desired bending moment was

applied to the test piece so as to simulate 'a simply-supported

beam. Thr~ugh the use of a hydraulic cylinder and associated

equipment the required bending moment load was developed (16). A

reduction in bending moment occurred during testing as a result of

hydraulic cylinder leakage. The bending moment was con-

stant along the length of the test piece for a specific value of

the bending load. ,The machine was designed for 5,000 in-lb and

operated at a maximum of about 3,200 in-lb of bending moment. The

reversed bending moment was gained through the rotation of the test

piece in the four-square mechanism.

The Mabie-Gjesdahl test machine operated at 1,200 rpm. The

machine was driven by a 3hp, 1,200 rpm induction motor (18).

Mabie (16) furnished two assembly drawings (19, 20) and additional

design information as to the problem areas in his test machine.

Mabie indicated that the disadvantages of this machine were that it

was difficult to hold the torque and bending moment, and noise and

vibration were present. However, the machine did not dissipate
. .

energy to apply torque to the specimen and operated on a proven

principle.

The exact instrumentation on the Mabie-Gjesdahl test machine

. is not known. However, the torque values were measured and checked

only in a static situation. The ~ending moment values were checked

and related to the pressure gage on the hydraulic equipment. The

load was applied statically and the pressure noted. Strain gages

were used for the static torque measurements and also for the bend­

ing load. The bending load strain gages were mounted on the load­

i,ng bar.
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The test machine was calibrated dynamically with suitablY

mounted strain gages and slip-ring and brush assemblies. The exact

equipment" is not knoWn •.Correlation of'these dynamic tests were

made to the stresses obtained through calculations and an 8-12%

error was noted (14). Correspondence with Mabie (12) indicated

that the commercially purchaseable components exceeded $5,000.00.

With these thoughts in mind, test machines similar to the

Mabie-Gjesdahl ~rincipie were conceived, designed and built at The

University of Arizona, starting the fall of 1965.

Three combined bending-torsion fatigue reliability research

machines ar~ presently in 'operation at The University of Arizona.

A research program is being conducted for the National Aeronautics

and Space Administration under the direction of Dr. Dimitri

Kecec~oglu at The University of Arizona, Tucson, Arizona, and

Mr. Vincent R. Lalli at the NASA Lewis Research Center, Cleveland,

Ohio. The description of these test procedures, test data and

their reduction presented here are part of this research effort.

The objective of this repQrt is to obtain the calibration param~

eters' presented in Figure 29. The experimental tests which must be

run to determine these parameters are described. The data reduc­

tion technique isals~ given. The problem of stress concentration

in the notch of the test specimens and the associated notch sensi­

tivity are discussed, and recommendations for future work are made.
. .
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III DESCRIPTION OF COMBINED BENDING-TORSION FATIGUE

RELIABILITY RESEARCH MACHINES

The combined bending~torsion fatigue reliability research

machines are designed to simulate a shaft in service. The objec-

tive of the immediate research program is to examine the fatigue

life of specimens made of SAE 4340 steel under combined loadings.

The specimens are subjected to reversed bending and steady torque

applied to a rotating specimen with a stress concentration~ which

produce combined bending-torsion stress~ or combined-stress~

fatigue.

General Description of Fatigue Machines

.Each fatigue machine consists of a two-section~ rotating shaft

with a test specimen locked in the center~ as shown in Figures 2

and 3. The horizontal shaft is coupled at each end to allow for

relatively free deflection when the specimen is loaded. A seven

and one-half horsepower~ 1~800 rpm motor powers the shaft. .The

bending load is applied to the specimen by means of two yokes~ one

each on two bearings located symmetrically about the specimen on

two commercial tOOl-holders. Below the shaft~ the yokes are con­

nected by a horizontal link, which concentrates the load at a

single vertical link in the center. The vertical link is then con­

nected to either a long or a short loading lever arm. These load­

ing arms make possible the application of a great range of bending

stresses in the specimen groove, by means of pan weight applied at

the end of the loading arm. One pound of pan weight is approxi­

mately equal to two thousand psi in the groove. The torque is

applied by means of a commercial Infinit ~Indexer which is located

on the back shaft of the machine.
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Flexible Couplings

::'":': "Sier-Bath, all-steel,- flexible coupli.ngs are used because of

r,'tfi~ii- ~biiityt~C~r~~s~ltt~~qu~and allow relative movement of

S§h~fts-h6lding th~ie~t'~pe~imen for proper transmission of the

~beE~i~g_~~~~~t. In addition, they are small in size and relatively

low in cost. '.. -There are two Sier-Bath couplings located at either

ietld·c::of the : two halves of the front shaft and a larger one on the

::-backishaft.' There areshrurik-fit on the shafts.

""-GearBox

...'..

• r;: "-7""".'-':::"

A Falk C6rp6ratI~ngear reducer box is used. It has a mechan-

ical horsepower rating of2iOhorsepower and a thermal rating of

272 horsepower, with'cooling fans. Its speed is 1,800 rpm, and it

has a AGMA gear ratio of -'1:84 .

cMethod of Torquing , '

:-G~__;=~h:e_ to!,q~eis applied, to the specimen/by means of a HDUI-200

;~~r~nit-Indexer mad~ by the Harmonic Drive Division of United Shoe

Ma_chinery Corp. ,Beverly, Massachusetts. The Infinit-Indexer has a
• :~.~ .. - - . - - • <-' -.'

,flexible circular gear rotating within a slightly elliptical flexi-

?~~:e, spline-like,' outer gear. At the major axis the gear teeth do

not mesh. ,When the shaft turns, the.inner gear advances very

?lightly ~ith respect to the outer gear inducing a steady torque.
,". ,- >". • • • ~ - ••

r~e torque level is adjusted by turning a large hexagonal shell on
:::r c. _ -_ ... • - ~ • -:,.••- '-

.tl1e outside housing of the Indexer with respect to the shaft.

Loading. Frame

: The loading frame is capable of producing a 3,540 in-Ib bend­

ingmoment in the specimen groove. There are two bearings located

on each side of the front shaft. They are spherical, roller bear­

ings with a tapered inside diameter capable of a maximum of 3°"mis­

alignment~The bearings require adapter sleeves and are SKF from

service catalogue No. 450. The bearing housings. are DIN UANASA­

6700-E-006 type and are press fitted on to the bearings. Below
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the front shaft is located a T-shaped frame which joins the bearing

housings to the essentially horizontal, loading lever arm. The

specifications of the lever are given in Figure 5.

Instrumentation

Strain gages are used on the tool-holder to monitor the bend­

ing and torque loads. They are not located in the specimen groove,

but rather on the tool-holder ~irectly behind the collets as shown

in ~igure 6. The reason for this is tw6~fold:

1. It is extremely difficult to mount strain gages in

the limited space of the specimen groove.

·2. Since the specimens are not r~usable, the gages are

not reusable also.

The positioning and electricaicircuitry for the four-gage bending

bridge is given in ~igure 7. The strain gage bridge arrangement

for torque is shown in Figure 8. Torque is measured by the method

shown in Figure 9. These are double-gages, 90 0 apart and all in

one piece. They are so mounted on the tool-holder surface that the

~w~ gages make 45 0 with the tool-holder axis of rotation. Table 1

contains the specifications of all the gages, as well as of the

other electrical components. The slip-ring assembly is located

adjacent to the strain gages, as shown in Figure 6. The slip-ri.ng

and brushes used are Breeze AJ-8005-A8 type. The slip-rings are

counterbalanced with an aluminum collar of equal weight and nearly

equal dimensions located on the other tool-holder, as shown in Fig­

ure 6. The amplifiers, galvanometers and recorder are matched

units consisting of a Honeywell Model 119 carrier amplifier,

Ml650 galvanometers and a Model 906 C-l recorder (Visicorder). This

is the equipment used to amplify and record the output.from the

bendi.ng and torque. gages.

\
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.r·,e' 'eIV.··· CALIBRATION OF RESEARCH MACHINES....,.,.---..- "'-~~ - _.~ _..- ~.~. . '-.-. -

.. .
-V."2:~:·';:~-":::': ':.':.. :' __ '::.>:.. ~',:, ."-',.- :...- .... -~-.

A. Ca.lib~ation Requirements.: ..

I~ wa~cd~si~ed tha~~hebending stress and shear stress in the

specimen ~oove.be .accurately known for each specimen. These two

. stresses cannot be monitored directly because it is not possible to

locate strain gages. directly in the specimen groove since each fatigue

failure would destr.9y.the gages.< This would necessitate replacement

of the gages afte~.each. ,test .r.un. Therefore, the shear and bending

stresses must be determined indirectly through the use of strain

gages J9cate<;l_o!1 :the to.o.lholder shaft adjacent to the specimen.

The compl~te calibration procedure takes into account the fol­

lowing: .c;:o,mplis:atJon§l..:.ee .....:::. c.e :::':...

7:':";> .1. Since the strain gages are located on the toolholder

rather than in the specimen groove, the groove stress must

be calibrated against the strain gage output.

2. The specimen contains a groove, which introduces an addi­

tional unknown, the stress concentration factor. This

value can either be taken from published data or determined

through additional calibration ...

3. The torque and bending. gages may be damaged during instal­

lation and require calibration against a standard.

4. The torque and bending gages may be slightly misaligned

during installation, and there may be interference or .

interaction between the torque and bending outputs.

5. There may be an axial force present in the specimen due

to the geometry of the couplings and the loading frame.

This axial force could be a function of the torque or the

bending load, or both.

The above suggests that the following calibrations be performed:

1. Calibration of the bending gages in terms of bending stress

versus visicorder output~
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2. Calibration of the bending'stress in the specimen groove

versus visicorder output.

3. Torq~e interaction into the bending bridge.

4. Toolholder strain gage bending output'versus specimen

strain gage bending output.

5. Calibration of the torque gages in terms of shear stress

versus visicorder output.

6. Bending interaction into the torque bridge.

7. Axial interaction into bending of the specimen groove

gages.

8. Measurement of any axial force from torque and bending

moment.

These calibrations are explained in detail on the following
~~

pages.

/

14
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B. Bending Calibration

1. Visicorder output from bending strain gages on toolholder

versus true stress in toolholder

Description of Test

This involved the calibration of the visicorder output in bend­

ing against the true bending stress. The true bending stress was

obtained by introducing a known bending moment at the toolholder

strain gages. 'In order that the bending moment at the gages be accu­

rately known, it was desirable that the test set-up be as simple as

possible in order that the error introduced was small when calculating

the bending moment, and subsequently, the bending stress.

Test Set-up

The laboratory set-up is shown in Figure 10. The slipring side

of the toolholder was removed from one of the fatigue machines. The

toolholder was locked down, cantilever fashion, at the coupling end

of the shaft. This was accomplished by gripping the toolholder shaft

with a torque clamp-screw device between the loading bearing housing

and the coupling. The screw end of the torque device was then locked

in a vise on a laboratory table, thus securing the toolholder in a

horizontal position. Next a small notch was machined near the end

of a test specimen, and the specimen was installed in the collet of

the toolholder. The purpose of the notch was to hold the wire which

supports the loading pan in position. Therefore the specimen was

positioned so that the notch was on top.

Electrical connection between the toolholder bridge and the

amplifier was made with the us~ of thin uninsulated wire which was

wedged between the silver plates and the di-electric on the appro­

priate arms of the slipring assembly•. The opposite end of the wires

were soldered to the correct leads of a bending bridge amplifier

cable, after having been removed from the brush terminals of one of

the fatigue machines.
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The toolholder was removed from the clamp-screw device and placed

in a vertical position, resting on the coupling. This insured that

there was no bending on the strain gages while the electrical equip~

ment was zeroed and balanced. The visicorder was zeroed and the bend­

ing bridge balanced according to the standard laboratory procedure.

A five-hundred-thousand ohm calibration resistance was used for

twenty-five visicorder calibration divisions. These calibration

divisions were established left and right of zero bending in accor­

dance with standard procedures.

Next the toolholder shaft was again clamped in the cantilever

po~ition~ this time making sure that the bending gages were located

directly on the top and bottom of the toolholder. This was accom­

~, plished in two ways:

1. A visual check to see that the gages were in the proper

~sll~ns. ,

2. With the toolholder gripped loosely and free to rotate,

the shaft was moved slightly to see where the visicorder

bending output peaks and then clamped in that position.

It was necessary to have the gages aligned in this manner because the

bending load was to be applied vertically, and this was the only

position in which the bending ga~es will record full output. Finally,

a stout wire was hung in the specimen notch and was attached to a

loading pan.

Test Procedure

Weight was added to the loading pan in ten-pound increments until

sixty pounds was reached. Then weight was removed in ten-pound incre­

ments until zero pan weight was again reached. The static strain

gage output was monitored at each bending level. The visicorder out­

put was carefully watched to see that the visicorder output returned

to the same ievel each time zero pan weight was reached. This insured

that there was no electrical drift occurring in the amplifier. Since

the lever arm distance for application of the bending moment to the

o
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toolho:lde:r~ gage~ was. abo~t seven inches and the maximum pan v7eight

. wp§~~~~y pounds, the. bending moment only reached about 420 inch. -. _ ..

P9.un<is.!, This was .<1.. good deal below the operating bending moment

al1<i-1:herefore the amplifier strain gage system was extremely sensitive

in this" low range ,of ope:ration. Because of the great sensitivity it

wa_s_n~_cessary to alter the test plan for some runs because of bending

z~r~ drift and o~her small problems. _The sequence of the pan weights

W?_s:~I1ot Jmporta~t.a.s..l()ng ~s_ at least twelve data points were taken.

Afte:r:'.chapging t!l~ pan weight,. a wait of up to ten minutes was some­

t.:im.~I?~n~c.essarY.. !:lE~;f9r_e.. _taki~g the visicorder run in order for the

electrical system to reach equilibrium.

This test procedure was ,applied to the toolholder arms of all

three fatigue machines •. - _

It was important that the lever arm distance, the distance between

the loading wire and the geometric center of the toolholder gages,

be recorded before the test system was torn down.

The D~ta Reduction

The standard procedure for reducing data of the kind presented
<- - •• - ~

in Table 2 is~? pl~ttoolholder output versus pan weight and fit

a straight line to the poi~ts; then convert the panweight axis to

true bending str~~'; -~t the toolholder and the output axis to apparent
, . - I _ - -

bending stress. However, this data was reduced using an analytical

incremental method. This method determines the average increase in

visicorder output per unit increase in pan weight. This is the

slope of the above-mentioned curve. Since strain gage outputs are

linear and are zero for zero_load, it was not necessary to calculate

the bending moment produced by the dead weight of the toolholder, thus

eliminating a major source of error.

Looking at the data, it can be seen .that the pan weights were

not taken in ten-pound increments as previously stated. When the

w~ights were calibrated against a standard, they were all found to

be 10.27 pounds. These same weights were used throughout the entire

calibration program.
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First, the data were ~etabulated in incremental form as shown

in Table 3. Note that the size of the strain increments is roughly

constant, not a function of panweight; and therefore, the assumption

that the data is linear is a good one.

The arithmetic average of the data was determined for each

machine. These averages have the units visicorder divisions per

10.27 pounds: They had to be converted to true stress per visicorder

output stress, a useful calibration parameter, which was the slope

of the desired curve. The toolholder output can be converted to in­

cremental output bending stress by

60 =o

E Rgage
N G R 1a ca

liN •
Vl.S

Ncal
(1)

output stresses for each machine were: .

the incremental visi~order output,

visicorder calibration divisions.

/

incremental output bending stress,
6Young's Modulus for SAE 4940 steel =30 x 10 psi,

resistance of the bending gage = 190n,

number of active arms in the strain gage bridge = 4,

gage factor =3.23,

= the calibration resistance = 500 kn,R
cal

6N. =
Vl.S

Nca1 =
resulting

where 60 =
0

E =

R =gage
N =a·

G =

The

60 = 135.9 psi,
0

1

60 =129.9 psi,
02

60 = 135.6 psi.
0

3

where the subscripts indicate the machine numbers. These values

were the apparent increase in bending strain when a 10.27 pound weight

was loaded on th~ pan. It remained to calculate the actual bending
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stress increase for 10.27 pounds of pan weight. The equation was:

L~WC=
I

where

60'T = incremental actual bending stress,

L = lever arm distance,

6W = incremental pan weight .- 10 •2 7 pounds ,

C = radius of the toolholder =1.0 inch,

I = moment of inertia of the toolholder cross-section =
0.74 in4 •

·The lever arm distances for each of the three machines were:

/

Ll = 8.745 in,

L . = 8.199 in,2

L3 = 8.237 in.

Performing the calculations, the true stresses for each machine per

10.27 pounds of pan weight were:

60'T = 140.0 psi,
1

60'T = 131.5 psi,
. 2

6aT = 132.2 psi.
. 3

Forming the ra:tio,· ~TH
= ~OUTPUT (apparent)· STRESS

~TRUE STRESS

= 0.967,
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D~i~gThese~pa~~~~t~~~~~iil~~o;beused directly in the calibration

~r9ge~~~ pr~~ented in Section IV-E but have a variety of uses in

the daily operation'of the fatigue machine. This parameter can be

~~ed.to determine: true stress at the toolholder gages and is extremely

\l§.~ftll to have on hand •.' ... ''--

p:<>j-''-2 .2·::·::Vi§idbrd~r' 'ou-tp{l.f; ':' fu.Om bending strain gages in specimen

.'-C,:>:iE~.,.:::-"~ -gro;~~ -&~f~u~ =.fr~e::~tress in specimen groove

l)'escr{pti6~'6f Test

,;:=-::c Ina 'previous section, it was pointed out that the fatigue test.__~-.--:-_._.- .._...

specimen does not 'ordinarily contain strain gages in the groove.

But fo~ calibration purposes, two test specimens with bending gages

in~he grooves 'were prepared. Before these specimens can be used

i~ the calibration of the fatigue machines, their bridge outputs must

i'irst J;>e compared with the analytically determined true bending

stress in the specimen groove.

"~' .:: Since this calibration is identical in nature to the toolholder

strain gage calibrationpresenteo in the previous section, the same

test set-up was used. Indeed, it was possible to run the two tests

simultimeously.

Test set-up

Instead of using an ordinary test specimen in the bending canti­

lever test set-up, the specimen with the gages in the groove was

used. It was locked in the collet with the bending strain gages

exactly on the top and bottom of the specimen. Therefore, the gages

on-the toolholder and ~n the groove lined up. Once again, a notch

was machined at the extreme end of the test specimen in order to guide

the loading wire and maintain a constant lever arm.
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A second amplifier cable was removed from the brush ,terminals

of a fatigue machine and positioned near the cantilever system. Thin
I ,

wire leads were connected from the strain gage terminals to the cable

in the proper arrangement for a two-gage bridge. The amplifier is

designed to accommodate a two-gage bridge as well as a four~gage

bridge. All connections were soldered and insulated.

Test Procedure

The test procedure was identical to that in Section IV-B-l;

however, instead of monitoring just the toolholder output, the groove

output was also recorded. The calibration resistance used for the

groove amplifier channel was 30 kn with the visicorder set at 25.0

,divisions. ,'Upon completion of the test, both lever arm distances

were I'ecorded.

Data Reduction

A glance at the data in Table 4 shows that the groove Otitputs

for Machines #1 and #3 are not presented in form of visicorder divi-
/

sions. The reason for this is that at the time of the tests, some

difficulty was being experienced in balancing_the specimen groove

'bending bridge with the Honeywell amplifier. Therefore, a static

strain indicator was briefly substituted for the amplifier and visi­

corder. The strain indicator aliows for the setting of the gage factor

and bridge size and then gives strain directly in microinches per

inch.

The data from Machine #2 was reduced by the incremental method

which was presented in Section IV-B-l. The change in visicorder out­

put for each 10.27 pound pan weight increment was determined. The

changes in output were then averaged. The results are given in

Table 5.

The incremental output stress in the groove was then calculated

as follows:

E Rgage
N G R 1a ca

6N •
v~s

Ncal
(1)



strain gage indicator outputs.

Then the incremental output

The results are given in Table
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where

E = 30 x 106 psi,

R l20n,gage =
N = 2,a

G = 2.08 ,
R = 30 kn,cal

N = 2.5.0 divisions,
cal

AN. = 2.358 divisions,
v~s

.1 /).0 = 2718 psi.
O2

'-~

For Machines #1 and #3, the static

were averaged for each panweight level.

strains were determined and averaged.

6. The result is an overall average of the increase in strain in the

groove for a 10.27 pound increase in pan ~eight. This average is then

converted to incremental output stress.

2560 psi

2589 psi

The next step was to determine the true bending stress in the

groove analytically using

Me
°GR= I (2)

But the use of this equation is deferred until the next section,

(IV-B-2.l),because of the complication which is introdu~ed by the

presence of stress concentration in the ·groove. This stress
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the pverage stress con­
gr'oove

'Kt~ the stress concentration factor

KBGR , the visicorder output stress ver­

Since the procedure in Section IV-B-

Experimental determination of
centration,factor in specimen

two unknowns:There are

concentration factor, not yet determined so far, must be included in

Equation 2.

,2.1

for the specimen groove, and

sus true stress curve slope.

2.2 was the only experimental test, it was necessary to somehow

extract both of these unknowns from this single test. A rigorous

determination of Kt and KBGR is not theoretically possible, but it

wa's~:fE!lt-: that 'even aies's pr~cise development is more desirable than

:resor'ting'to:': :'tabular valuesof theoretical stress concentration

factors .'~ ....
' .. .;, 2::':: The: 'methocf us ed for det~rmining K

t
and KBGR was the following:

Fo~' each machine~ the inc~em~ntal output bending stress in the groove

wasc.s~trequai to the incremental true stress·
. i
,

- .._'".'~'--...... "';",':" ....... -- '"
... _ ....-"... ArT - ArT
,-.~ ._ ,,'';... Llv. - LlV

T·0

or,

60 = K 6WLC
o t I

Solving for Kt

"--.- .
.... '-"'"_ ...'---

(3)

The solution of Equation 3 for each machine gives
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K
t
" = 1. 240
l'

. K . = 1.160
t

2
,

i
I

I
I
I

.: ....- ~..-
- 1.445

'Since' the' same specimen was used for each of the three tests, the

~tress-concentration'factor must be the same. Its value was taken

;i:~: be'· :the-~rithmeti:cC. :~ve~age of the three values. Therefore, the

~ffe;t'{ve7~t~ti~"str~ss:'concentration factor for all specimens is

Y.2S" . This' is' astati:dstress concentration factor because the
"'.'~.- . _. -

,c~olibra:t:ron 'procedure'used:w~s static in nature., -'

:~T":~: ~~~-xt ~ itw~~ n~c~s;ary to allow, for' variation from machine to
t"~:; _~ _ .; . :_.-.:- - ..~_._. .~_ ~- _ .- - -.- _.. .

mach1ne. Th1s 1S reflected in the value of KBGR for each machine.

_F~rs'~~' 60i'wascalculafed using the newly determined value of K
t

, or
:o..:C- ..:.. __'." - - ..... '.: p ~_ _ ~_ .... ~ __.: •• __ _.

.......;:-.:.:. -

60 = K 6WLC
::0',0. "T' ave I._ .. - - ' .
- :.---

~~~en'~GR.was calco.iated using the experimental results from Section
'-iV::"B:";'2~"-"" -.'- ,,:

--'-"~ .~ -- - ~ ,;.~.:: .;.::.

. -"""'-- . ~ -". -,.-

.- -- '. - - .",~ .__ . -,,"'

=6butput Stress
6True Stress

\.

-=.The ~esults for,e.ach machine were

.::.: - ._~. ~.::...::-

_. ~-.., . "- .. - :-,-' '-" '-" _. . .:: -
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0.902

.... ,

= 0.972

~GR will be used in the data reduction technique of Section IV-E.

3. Torque Interaction into Bending Bridge Output

Description of Test

For the bending strain gages on the toolholder to perform satis­

factorily, they must be in the proper position on the shaft and must

have the correct orientation. No matter how much care is taken, due

to human error during installation, the ~ages will always be slightly
,,'

out of position. The effect of such misalignment is interaction of

th'e'torque load with the bending bridge, o~tput . The extent of this
" -

int'eraction and its direction must be determined. .The procedure used

was to maintain a constant bending load and vary the applied torque.

A set-up was used, whereby the change in the bending bridge output

was only due to torque interaction.

Test Set-Up

-- ,Because of its simplicity ,'a cantilever-type set-up was again

used. A torque arm was needed to apply torque to·the toolholder.

This device was a standard test specimen with a steel bar welded

perpendicular to the specimen at the groove. The bar was.approxi­

mately thirty inches long and has a small hole near the far end

through which a wire was strung to support a loading pan, as shown in

Figure 11. The toolholder was cantilevered in exactly the same way

as in previously described calibrations. Once again, the toolholder

ben~ing gages should be directly on the top and bottom of the shaft

for full bridge output •

. ·In this test, it was necessary to monitor bending and torque

toolliolder outputs; therefore, two amplifier cables were used and
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i
were connected to the slip-ring 'by fine wires in the manner described

in the earlier calibrations.

Next the specimen with the torque arm was placed in the tool­

holder collet. A key was placed in the keyway on the specimen so

that the collet could support the torque without the specimen slip­

ping. The specimen was then tightened in the collet with the loading

pan, and the torque arm was placed in a position slightly above the

horizontal. The reason for this was that the torque arm deformed

elastically during loading .. Using a level, the torque arm was posi­

tioned so that it was about one half a ~egree above the horizontal

in the no-load configuration and one half a degree below, the horizon­

tal when the maximum load was applied. It should be noted that the

error introduced by the change in lever arm distance due to elastic

deformation of the torque armis a function of the cosine of the

change of the angle and is negligible. .--

Once the torque arm was ,positioned with respect to the tool~

holder, the entire assembly was removed from the screw device and

placed with the toolholder in the vertical position. Then the torque

, and bending bridges were balanced; the visicorder outputs zeroed, and

the calibra~ion r~sistances (five hundred thousand ohms for bending

and three hundred four thousand ohms for torque) and the calibration

divisions (twenty-five divisions for bending and forty-five divisions

for torque) were set on the visicorder. Then the assembly was

returned to the test configuration. Next a bending load pan was sus~

pended directly below the specimen groove. Also a torque load pan

was hung from the end,of the torque arm. A plane connecting the two

pans must be perpendicular to the l~ngitudinal axis of the toolholder

and specimen. This was checked through plum lines and squares. Four

ten-pound weights were added to the bending pan and the test set-up

was ready for torque interaction calibration •.

Test Procedure

Weight was removed in ten-pound increments from the bending pan

and added to the torque pan. Both the.bending and the torque channels
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were monitored. When the weights were changed, there was a tendency

for the torque arm to vibrate. This was dampened with the use of

the hand. It was necessary at times to' wait as long as ten minutes

between data points, depending on how much drift there was in

the amplifier and how l?ng the amplifier took to reach equilibrium.

When all the weight was in"the torque pan, the weights were removed,

ten pounds at a time, and pla ed in the bending pan. When all theweights

were back in the bending pan, the two visicorder outputs for zero

torque pan weight were compared. If they were identical, then it was

conCluded that no amplifier drift occurred during the data taking

period and the data was~ good. If they did not compare favorably,

then the data was scrapped, and the test was re-run. At least two

good sets of up-and-down runs are needed for calibration purposes.

, Data ·Reduction

The calibration data are presented in Table 7. After the test

for ~achine #3 was ru?, the visicorder output was closely inspected.

It was found that there was no measurable change in the bending

bridge output with torque load. Therefore, it was not necessary to

_~arry theyeduction any further; it was immediately concluded that

there is no detectibletorque interaction into bending for Machine

#3.

\

(10.0, 11.912)

(40.0, 10.425)

The data from Machines #1 and #2 were reduced graphically.

First, the torque bridge output in divisions was plotted versus the

bending bridge output in divisions, as shown in Figures 12 and 13;

then a straight line was fitted to the points~ Next the slope of

the curve was determined by selecting two points for the curve, and

the rates of change were determined. For Machine #2, there are two

sets of data and two slopes. The average slope was· used. From

Figure 12:

Machine #1

Point A

Point B,

D
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~N . = 30 div- ~·-v.J.s .. torque

28

~N .= -1.487 div
vJ.sb d'en J..ng

From Figure i3:

Machine #2

Point A

Point B

...~ ...~: -

(36~25~ 18.70)

(5.00, 17.72)

~N . =31.25 divvJ.storque

~N . = 0.98 div
",.J.Sbending

Next the visicorder outputs in divisions were converted to strain
-

using Equation 1. The conversions to strain gave:

M:.· = 1. 75'1l in/in. B
1

·M:. = -31. 9 II in/inT .
. 1

~£ = 1..15 II in/in
. B2

• .

,_ ....' ....
~£T . - 33.5 II in/in

2
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Conversion to stress instead of strain could have been used also

:~he~e_the subscript denotes torque or bending for Machines #1 or #2.

For torque, the parameter~ are:

....
-" - . - ~

.:.;. _.:.. ~:.:._--

R = 120 11..." -. :. . ;: . __ . ~gage

:- c.:" ':":. :::.::-:::.:":::-::_;.:. --.::~ .::.:-.::.:=.-- ~N = 4
a... ,.....,... ..:-; ._::,"~-.,; -'::.:' -=::.2. ~~_~._, ... __ ~.,...,

.- ~- _._- ~.~.'_0-'_' _,..:..:- ,. __

'~::.:-.G ::: 2.06

R =304 kr2cal

/.

The slopes in terms of strain would be:
.- ...- . ..-~. ~ ......_.---_.

Sl= -;i~~ ::: -0.0548 =

S =1.15 - 0.0343 =
2 33.5-

Since stress is equal to the strain multiplied by Young's ModulUS,

the slope of the bending stress versus shear stress. curve is identi­

cal to_thestrain·curve slope. This slope is given the designation

Kr/B and will be used in the calibration procedure described later.

Since there must be no interaction into bending for zero torque

load, a plot of bending stress interaction versus shear stress could

be constructed by drawing a line through the origin with slope Kr/B

and label~ng the axes appropriately.
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. -_.­
~ -- ~ - ~ ." ~_ ...

N'ote' :that the interaction for Machine #1 is negative, the inter-

~~~'~~~[on for Machi~e #2'is positive, and the interaction for Machine #3

is zero.

4. Relationship between toolholder bending stress and specimen
groove bending stress

All previous tests involved the calibration of only the bending

strain gage bridge outside of the fatigue machine. In this test, the

. bending bridge will be calibrated in the fatigue machine.

'~-:-~~,-,~:,:ror:anapproximateanalysis, it can be assumed that the bending

:': -moment along 'the toolhblder shaft between the two loading bearings is

cc__ , :constant. 'This 'would be true if the toolholder was weightless. Then·

~~he-relationship between toolholder bending moment and specimen groove

bending mom.ent·· i~~ ,-

- -: -'. • ....... '.:~ -- _.; •. '.- e-' M'-· .'.'; ~.. . = M •
toolholder grooye/

. .... ..-
_4 ~ -.:;.... __ ... "......

·-':"T:he--bending stresses are given by

,Combining these gives

. 'OTHITH_ °GRIGR
CTH - KfCGR
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Solving for the bending stress in the specimen groove, the groove

stress'isobtained as ..

_.... , . ''"' ~ - '- --.
......... '~" _. ---_..- '::,~

. .

-_. :·.. :,.·.·[C., ~ [I jGR TH
C1 . ··:: .. K -- -- cr
'GR" f CTH I GR TH

- -
Howeye~, in a more sophisticated analysis, the dead weight of the

'.- --',-

toolholder must b~ considered. Two approaches are given. In Section
'- -. ~

IV-B-4 .l~ an expe~ime~tal analysis is conducted. The results of
". - -. _. ~. _.

these ,tests ~~e applied t~ t'h~ calibration procedure presented later.

Th~:~~o;d'-a;;r~a:~h i~'-anaiyt'ical and is presented in Section, IV-B-4. 2..

'~-.:' 4.i'T~-01ho'lder 'st~~in g:lge output versus specimen strain
... c, . -= '. .c :',"gige output .,.

Description of Test

-. 'This test involves the caiibration of the bending bridge of the

toolholder against the bending bridge of the: specimen groove.

Test Set-Up

For this calibration to have any usefulness, the set-up must be

the normal running mode of the fatigue machines. Therefore, a speci­

men with bending gages in the groove was installed in the toolholder

collets according to the actual test procedure which is used in run­

ning specimens. For the full procedure, the laboratory checklist

given in Appendix C should be consulted. The leads from the specimen

were soldered directly to an amplifier; leaving some play in the

leads so that the shaft can be rotated by hand a few times without

causing the leads to wrap tightly around the specimen. The normal

brush and sl~p-ring arrangement was used for monitoring the toolholder

output.

The strain gage bri.dges were zeroed and balanced according' to the

checkl~st procedure. The toolholder shaft was rotated until the spe­

. cimen groove gages were along the neutral axis, when balancing the
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bridge. The toolholder 8,ageswill then be r.andomly oriented, Hhich

is perfectly all right since the l~ading frame: is blocked up (see

checklist procedure). The calibration resistances were 190 kQ for

the toolholder and 11 kQfor'the groove bridges, while theyisi-'­

corder calibration divisions were both 25 divisions.

Test Procedure

A lIquasi-staticll test was run by rotating the fatigue machine

shaft by hand rather than being turned full speed or left at rest,

:while~readings were taken. ,

c.,,:~"·:n~leights were placed in the loading pan in two-and-one-half­

cpound increments until fifteen pounds of total weight was reached.

Then the weights were removed from the loading pan at the same rate

until the pan weight was zero. At each level, the toolholder shaft

was rotated a few"times by hand while the visicorder recorded the
- - - +.

-outputs"froin' b'~th b'~hding'bridges. It was made sure that both out-

'puts snowed an'upper and'lo~er peak so that the total bending width

;'>coui~ be' dete~i~ed. ' At least twelve data points were taken.

, ",', "The- test ~as 'rep~ated for the other two fatigue machines.
" . ..;.......:. ....

Data Reduction

", __,,:.:.!?e calibration data are given in Table 8. The graphical reduc­

_:tion technique ,of the data was used . For each set of data, a plot of
~ ".- , ~ - -- . . ,

, toolholder output in divisions versus groove output in divisions was

, made" as shown in Figures 14, 15, and 16. Straight lines were drawn

,to fit the data. Two points were selected on each line and the

6N . and 6N . were determined. Next the outpu,tsVJ.s ' , vJ.s
toolholder groove

-.. - - _.

'were converted from divisions to strain by using Equation 1 with

"Young's Modulus removed. The results are given in Table 9. Lastly,

the slopes of the toolholder bending strain versus groove bending

" 'strain plots were determined and given the designation KGR- TH , with
,

the following results:
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~~~~r~ng.~~u~ingscanbe expressed as a function of the pan Height if

.(..:~I1 ~nalys~s. 0(. the l?~dingframe is undertaken.

_:.. ;''':::. -.To c()J!lpl~t~ the mathematical model) the operation of the cou­

~.:.p~i!1gs. a~.~~tl1~r end of the toolholder had to be fully understood.

-It was.believed .that ~ .s·ingle-~alued resisting moment) reaction force

'~~J?~ pi'{0"1:: . p,?int could be associated with the coupling mechanism. An

.:.~xperimen1:.wasproposed .,?-nd initiated to determine these three unknm-Tn

.. p~;,ame"1::~rs. .. f.: .. specil1len was placed in the machine and the machine was

:s~"1::_~p.as ~f_~t ':las about to be run •. However) the chuck on one side

.::w.~s: l].~l~.only at 011~.·e.nd., .' Then the opposite side of the machine was

~.s.':lpported in: ~_ ~evel position so that the linkage would exert an equal
. .

.. force on each. section of the shaft when the machine was loaded. Next)

;~::1?ala!1c~.systemwas.rigged above the machine) as shown in Figure 18.

Care: had to be taken ..toinsure that the wire connected to the specimen

-was vertical at all times. .' Also) the balance bar had to be horizontal •

.~ bubble-type level was attached to the t.op of the chuck with a rubber

band.' This was u~ed t~ tell when the shaft was in a level position.

Then a pointer was attached to the chuck. A scale was then connected

to the. opposite safety bridge and the pointer adjusted so that it

would read out· increments on the gage. The graduations on the scale

stood for no physic~l quantitie~; they were only for reference.

Data Taking Procedure

First the machine was loaded in the lower weight pan. Five data

points were .taken.starting at zero loading and increasing in five­

pound increments to twenty pounds. Each load was carefUlly centered in

the loading pan so .thatthe load was balanced at all times. Then the

balance pan was loaded until the force in the wire was great enough to

lift the shaft to approximately a level position as indicated by the

bubble level. Then the weight in the balance pan was carefullycen­

tered and the positions of the balance pins adjusted so that all forces

acted at their measured distances from the fulcrum. At this time)

'us~ngthe level) a zero mark (level shaft position) was recorded on the
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scale. Before and after each data point was taken, the zero mark

was-checked to see that {thad not moved. Now, with the observer in .

a seated position so'thathe could line up his eye with the top of

the backshaft and~the pointer'to maintain the same parallax throughout

the experiment,-the system'was' displaced from the equilibrium posi­

tion .and allowed-to' return. ': Small weights were added or subtracted

on the balance pan to reach an equilibrium point when the shaft was

horizontal. Since the pivot point in the coupling was stiff (large

resistihg in6~ent),-there'was little sensitivity to weight added to

tHe' 'balance 'pan. :Thus it -was" found that sensitivity could be

iti~reased by~foliowing the procedure just mentioned, that is, displace

th~'~' shaft- up -~nd down'c from the' equilibrium position and allow is to

return freely. An example is now given to help clarify the procedure.

F,igure 19 shows the scale graduations. The dotted line, B, is

the position the pointer would indicate when the shaft is level. If

the shaft was displaced upward and allowed to return to the equili­

brium position, it would stop, say, at line A. Now if the shaft was

pisplaced downward, it would come to an equilibrium position at point

C, or two full graduations below A. However, lines A and C are equi­

distant above and below the level point, line B, and therefore the

observer considered this set of ,circumstances to be the sought after

equilibrium position and the weight in the balance pan at this time

was considered to be the weight necessary to bring the shaft to a

horizontal position for a given weight in the loading pan. The prob-'

lem was further complicated by the fact that the pointer would not

always return to line A when tha shaft was displaced upward. It

would be very close to line A, and the average of the displacements

upward would give line A. The same is true for line C. This would

indicate that a great deal of time and trials were necessary to pro­

cure each data point. This was, in fact, the case.

When the data from the preceding experiment was reduced, it was

found that the lever arm distance calculated was 'physically impossible.
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Since it was impossible to increase the accuracy or sensitivity of

the experiment;. it was concluded that:

.:1., The.ope:ration of the coupling was erratic and no valid

=---:..:. ._~_:._ ..__~I1!.athematical mode of its operation could be determined.

". 2 ... Since the coupling operation vias indeterminate, a full

... -- - . mathematical model could not be determined and some of

'.'_. ~"" '--'- ~..:._~~_the. _.object~ve~ of this study would have to be compro-

--:"-- .. ---,' '..-::._-::; .~ .' .. 'mised o. :

-~_::::.- The results of this .approach indicated that the exact resisting

=momentat _.the. coupli.ng, . the lever arm, and the reaction forces could

-:-i\ot--be determined with the d~sired accuracy. This conclusion lead to

_.~ ~he pursuit of the different calibration procedure presented in this

report ° _. _.. . _.- '. ~ - --=---.. ~:.:' - -"

- - - '-~ - P':". ._". '" "_ ~ _: •

_/

..~ ...:_.~ -:- "_.-

. \,



. C. .Torque Calibration

L Torque load versus visicorder output
,

Description~of T~st-- -

As was the case in bending, it was necessary to calibrate the

torque bridge ~n the~o~l-~?lder against a known torque loading.

Wi th this c~·iibr~t·i~~;-~~y'visicorder output of the torque channel

can immediately be converted to shear stress in the tool-holder.

Since the applied .:.1;0.r'q~~ i,s..constant along the tool-holder shaft,

shear stress in the tool-holder can be converted to shear stress in

the specimen groove without further calibration.
=- -~. -
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Test Set-Up

The test set-up was identical to the system used in Section IV­

B-3 to determin.e the. torque interaction into bending. In fact, if

th.e. torque pan weights for each visicorder run are recorded at the
. /

time the torque interaction into bending calibration is run, then

the same data can be used for both tests. This procedure was fol­

lowed for all three machines.

Data Reduction

The calibration data are given in Table 10. The pan weight

versus torque output plots are given in Figures 20,. 21, and 22. A

straight line was fitted to each set of data and two points are

selected off each curve. The delta values were determined; the pan

weight was converted to true .torqueusing:

liT = lIWL

where

liTtrue
lITC=

J
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'6W = increment of pan weight,

L = torque leverqrm distance,

6T = increment of torque,

.C =radius of toolholder at.the torque bridge.,

'.

J = polar moment of inertia at the torque bridge.

The torque output was converted to apparent shear stress using

reduction Equation 1. Lastly, the slopes were determined and given
/

the designation Kr' The results appear in Table 11.

2•. Bending Interaction into the Torque Bridge Output

Description of Test

If the torque strain gages in the toolholder torque bridge were

slightly misaligned 'during installation, then there will be an

interaction between the torque bridge output and the bending load.

This interaction must be determined experimentally for each torque

bridge. The method used in Section IV-B-3 to determine the effect

of torque on the bending bridge output was used again. The torque

load was varied, and the change in the torque bridge output recorded.

Test Set-Up

If the torque load applied to the torque bridge is allowed to

be zero, then the set-up, Figure 10, used in Sections IV-B-l and

IV-B-2 can be used. Thus, three different calibration· tests can be

run with the same set-up, greatly reducing the time necessary to

complete the calibration of the fatigue machines.
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In this -wst the torque bridge and bending bridge outputs

needed to be ~qnit'?.!'.~<:l; _Th~ cantilever system was connected elec­

trically as de~cribed'in Section IV-A.

Test ProceduY'.£. . .

Wei~h.~ !t<;;~_.pJ,§_~~(t iDthe loading pan in ten-pound increments,

as in Figure 1.0.-· 'A visicorder run was taken after each weight

increase. One hundred ten pounds was the maximum pan weight used.

From twelve ~o thirty data points were run depending on the repro­

ducibility of "the data. _ ta~ch time zero pan weight was reached, the
--~~ .

visicorder pocition was noted and compared with the previous one.

If the differ'ence was greater than O.l.divisions, it was concluded

that ~~pl~f~~~.~i!t has occurred and the points between the zeroes

were emitted. .

Data Reduct iC..itl

The calib~ation data are given in T~ble 12. For Machines #1

and #2, the data of bending bridge output was plotted against the

torque bridge output', as shown in Figures 23 and 24. A straight

line was fitt~d to the data and the slope of the line determined by

taking incremental changes in torque and bending outputs and con-_

verting them ~ostrain. Then the values were ratioed.

For Machine #1, two points on·curve are:

point A

Point B

Using Equation·l,

(8, 0.15)

(0.35, -0.1)

6N . = 7.65
v~sb d'en ~ng

.~ . =0.25
v~storque



I
:,,;:;..:c-. ::::"-"'-6£' ;c.' .... (7.65)(190) = 8.97 f.I in/in

c.~. -: :>;" --: :.' ~:-.-:: .:::( 2 5 •1 ) ( 4 ) ( 3. 23 ) ( 6 . 5) (10
6

)

," .
. .:...~;.~ ~'.~':'~~-._-~.-~.
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= 0.267 1-1' in/in

,,-.- ~ -~ - - ­............- .......-...

.~ :::._-- - :- ...• '- "-." '.- .

~e:T 0.267
Slope = ,~e:B = 8.97

,..' -.'-

= 0.0298 .

For Machine #2, two "p'ointson curve are:

·Point A

Point B

(40 :0,- 1. 8 )

(12.-5, 0.45)

. /

"'_ ... _. -_._---"_ ..--

. '::AN; : =1.35
'Y.LS
. torque

';' ~_e:B =
(27.5)(190)

= 33.58 in/in
. (25.0)(4)(3.23)(500)(10a)

f.I

- . -
r ~ .... • ~

.... . ,::..._-' . . . ..
" "-"

~e:T
( .135)(120)

= 1.255 in/in-
(44.8)(4)(2.06)(350)(10 3 )

f.I

Slope = 1. 2555
33.58

= 0.0374
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Since for zero bending', the' bending interaction into torque

_, .,__ must also be zero; the slopes are all that are needed to completely
. .

define the interaction. The slope was given the designation ~/T.

:.;,'..:- ':'.:','-The Machine #3 data were reduced slightly differently. The

~~xabulation of the data iri Table 12 shows, that the datum of the da~a

:,':: :s.hifted with each subset. Therefore, each subset was given a dif-

.::~ ferent plotting symbol; and the data was plotted as shown in Figure

--:-:·25'.-·' A· -line was· fitted to each subset, apd the slopes were deter-

",,::mined. . ~-' ~ -- - ......' - - .
.. - . - .

, --

_..- -." ~ -
~._.:..... _ ,1:: ._. ~ ,.

.":" .-. -~.~,:-.- ~

_', ~ _.-- .

,Symbol

...:- ~.- -- • q •

Slope

--0.02835

-0.0409
~ .. -.

. .,.0.0591

-0.0543 /

The dot subset was thrown out because it is far out of line. This

----was--justified by the fact that this data was taken first, and equi-

,librium of the'electrical equipment may not have been established.

Th~ 'remainin~ f~~ slo~e~:were averaged. The average slope is

-0:0538 • Then the conversion to strain was made.

.:-.--- ,-.- --_:_[ J' J1 N ]R N N GR vis
Sl = gage· Jcal a cal torque ==

ope N N GR R 5N .
. cal a cal gage -2 v~sb d'en ~ng

-0.01698

The coefficient of the bending visicorder divisions is a correction

factor ~ade nece$sary bya change in the attenuation on the bending

channel of the amplifier.
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.2.1 Effect of bending on torque bridge output - additional
test . .

Description of Test --

From the definition of interaction, it is evident that the bend­

ing interaction into torque should not be a function of the mean

torqlle ~o~.~~ ~hat is, _~~=-_ITl_~~~lignment of the torque gages does not

vary with torque load; therefore, the interaction would not vary. A

spot check was necessary to show that this reasoning is correct.
\ .

The result can also be extended to the torque interaction into the

This test was only applied to Machine #2.
: ..... ''"-r,. ,.

Test Set-Up' v __

For this test, a high mean torque was applied to the canti­

levered toolholder.The torque arm was required to apply this

torque. The test set-up was identical to that used to determine the

effect of torque on the bending bridge output and is that of Figure

11. /

Test Procedure

Twenty pounds was placed in the torque loading pan. This

weight w~s left untouched for the remainder of the test. The

remainder of the test proceeded in the manner described for the pre­

vious bending into torque interaction calibration.

Data Reduction

The data are given in Table 13 and plotted in Figure 26. The

reduction of the data was the same as that given for the previous

bending into torque interaction calibration:

From two points on fitted line:

Point A (25.D, 26.1) .

Point B (10.0, ~5;25)

6N . . = 0.85_
v~storque



N . R
v~s gage

N N G R
cal a cal

fiN . = ·15.0
v~s ..

bend~ng

(15.0)(190)
= (25.0)(4)(3.23)(500)(103) - 17.65 pin/in
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N • R
v~s gage

N N G R
cal a cal

= (0.85)(120)
7(4:-:4-.-::8~) "7":(4~)'(-=-2-.0~6-o-)"7"(3-:"":5=-:0"'7)-;"'(1:-:0:-:3~) .. o. 788 pin / in

Slope = 0.788
17.65 = 0.0447

/

. This compares favorably with the slope presented for the zero

mean torque interaction and therefore, for Machine #2, th~ average

of the two, 0.0410,is taken to be ~/T.·
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D.:" 'Aii~l"'Effects" '''- .,

':=-'~':"~l:' :Eff~cit-~f ~iai load on bending bri.dge output

It was not known whether'the loading configuration of the

f.~:t;Jm-!~_..mSi,¢hJnes impariS an axial stress in the test specimen. If

there~is such,a:force,then it must either be eliminated or

accounted for in the determination of the stress ratio. The axial

stress could be zero, a constant, a function of bending load, a

function of' torque' load, or· a" function of both bending and torque

loads. This axial stress must be accounted for in order to com­

plete~thecalibration of the .fatigue machines.

The tool-holder bending bridge was set up so that it measured

. the bending strahl."and canceled out any axial .force applied. If
-" _.~ -- ."

two-of--the-arms"on" the bridge are reversed , the bridge will now

measure' the -axial ibaci","cancel out any bending load. A preliminary

step In the' measurement of-the axial stress was to determine if any

axial i~ad:inte~action into the bending bridge output was present.

If there -Is' no"'interaction, then any change in the axial stress

bridge" when a be~ding load-is applied, will be a true measure of

the axial" stress in the specimen groove." If there is interaction;

:~hen t"he -correcte<f output will 1:?e a measure of the axial force.

,:,,·;":-~':::-.The"test to be performed was not bending interaction into the

axial 'bridge, but the axial interaction into the bending bridge.

since' any interaction is due to misalignment of the bending gages,

if one form of interaction is present, then the other must also be

present.

Test Set-Up

The tool-holder was removed from the fatigue machine and
., .

placed in a vertical position, resting the coupling end on a hard,. "

level surface. A specimen with gages in the groove was installed'

in the collet •. The bending bridge of the specimen was connected

to the amplifier. Then the amplifier channel was balanced .. A



"~~eight pan was next balanced on the end of the specimen and a visi-
. _.._-----~-----_ .....-
corder~run taken. Then weight was stacked in ten-pound increments

~on":the._p~n until sixi;ypounds was ,reached. The bending bridge out­

;. P':1t,V!as.recorded after. each. addition of weight.

;'J:jeita'Reduction .~. :.:.'=.' ~-_.: .. , .. , .

>:",,:, The visicorder output showed that in all cases there was no

:measurable axial interaction into the bending bridge. From a pre-
,--~-~-~-_._-_.

vious, di~cussion,it can also be concluded that there was no bend-

:.i.,ng .interactioninto the axia·l bridge' of the gaged specimen.

~2 ..o. .Measurement of the Axial Stress

.. -..:->:~~:~:::..• _,-:;::.,~2.~ 1: Heasu):'ement of the axial stress as a function of
. . Pending load

<".L •• ~'-..: _0 .... ~ •• -. :---:.. .-.. ::" ~ -' ~ _." ~.: ~. •

Description of Test

Since it was established that there was no bending interaction

into the axial stress for the gaged specimen, the axial stress
couldbe--meastired"~·_."--- _._.._p~_._'---

In this first test, the axial stress was investigated as a

function of the bending load. The test was conducted only on

Mac;:hine.#l and the results were reduced before any decision was

made about extending the analys~s to the other two machines.
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Test Set-Up

The specimen which was used in the axial interaction test was

installed in Machine #1 according to the installation checklist.

The brush assembly. which monitors the toot-holder torque output was

,lifted from the slip-rings so that they were inoperative. The long

leads from the specimen were connected to the torque terminals on

the brtlsh support so that the bridge formed would measure axial

.stress and cancel out bending. The tool-holder bending bridge and.

the s.pecimen axial bridge were zeroed and balanced ,according to the

checklist.



Test Procedure

With the long arm in use, weight was added to the loading pan

in five-pound increments. Between each increment a visicorder run

was taken while the tool-holder was turned quickly by hand. Weight

was added until twenty pounds was reached, and then the test was
. .
repeated.

Data Reduction

The data are given in Table 14. A plot of the data is given

in Figure 27. It shows a non-zero axial stress which is a linear

function of the bending load.

The magnitude of the axial stress was 4etermined next. For a

twenty-pound range in pan weight there was a 1.7 division range in

axial groove gage bridge output. Converting this to strain,

46

£
o

N. R=~ gage
N N G Rcal a cal

(1.7)(120)= =(50.0)(2)(2.09)(290,000) 3.38 pin/in

or in terms of stress

a . - E£
.0 0

6 -6= 30 x io x 3.38 x 10 =101.4 psi

This is a negligible amount of axial stress. Since the pan weight

range was twenty pounds on the long arm, an axial stress of about

100 psi would be the maximum that would ever be encountered in any

test run. Therefore, the axial stress due to bend~ng load can be

omitted. The analysis was not extended to the other two machines

because the axial stress was found to be so small that a value ten

times as great would still be negligible.
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,_ '2.2 Measurement of the axial stress as a function of
":. ".:- -, -~ :torque load

Description of Test

'Next,' the axial force 'was measured as a function of the torque

16ad 'with the bending load held constant. This test was performed

o'rily :fo~ Machine #1. '

Test Set-Up

~~e torque brushes were placed in contact with the slip-rings

;~d_'th~,be~di'~g,_gages'-iif.fed. The axial bridge of the specimen was

~ir~dt~'th~'bending terminals on the brush mount. The specimen

~~s~~instaiied'~;cord{I1gto checklist procedur'es. The torque bridge

;~d-the ~p~cim~~--axia'l'br.i.dge~ere zeroed ,and balanced. Five

;~~~d~:'~er~'piac~d in the loading pan at the end of the lO,ng arm.
:.- -'

,,,,,Test Procedure
.-.~; ." ~--

~~ =~Torque load was var~e~ randomly through the Infinit-Indexer
/

.. and, ,a yisicord,ep_ .run taken at each level. Fourteen levels were

~- .:...:: .--:. . .. ..

'Data Reduction'

The data is given iri'Table15. The specimen groove gage out­

-put 'plotted against the torque output appears in Figure 28 and is a

~iinearly-vary{ng axial stress. The range of the stress is 3.7

divisions. The strain for this output is,

e;
o

N.. ,R= 'V1S gage
N N G Rcal a ' cal

(3.9 )(120)= =(49.8)(2)(2.08)(290,000) 7. 78 ~ in/in

J

J

" which is 233.4 psi in terms of stress.

This value, though larger than the one for bending load, is

:_:still, negligible. The small value of the axial stress over a large

range of torque indicated that the test did not have to be repeated

for the other two machines.
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E. Summary of Calibration Results

The calibration of the complex fatigue reliability research

machines was thus completed. Bending, torque and axial interaction

tests, calibration of' the bending, torque and specimen groove

bridges against a standard, and tool-holder bending output versus

specimen groove bending output tests were thus performed for each

machine. The relationship between the. variables in each case

proved to be linear and a slope could be associated with each cali­

bration. Since for all cases, the functional relationship begins

at the origin, the slope of each curve completely defines the func­

tion. These slopes have been given calibration coefficient desig­

nations and appear in Table 16. The two footnotes of the table are

explained in Appendix E.

Now, it is necessary to combine the calibration results into

an orderly method of determining the true shear and bending stresses

in the specimen groove given a visicorder output, or vice versa.

Actually, the calibration procedure requires that the calibration

method be run in both directions. First, in any test run, the

desired stress ratio and bending stress level are selected. From

these, the shear stress level can be calculated and, through the

use of the calibration coeffici~nts, the number of divisions of

bending and torque on the visicorder can be determined given the

machine to be used, the calibration resistance, and the calibration

divisions. Next, the test is run and a visicorder record taken.

The record is then reduced. The four experimental parameters,

bending divisions, torque divisions, bending calibration divisions,

and torque calibration divisions, are measured. Using the calibra­

tion procedure in reverse direction, the actual bending stress,

shear stress, and stress ratio are determined. When an entire

stress level is run,some statistical comments can be made concern­

ing the stress levels and stress ratios achieved. This is discussed

in Section V-A.
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... J.• -•• ,_,

Jhecalibration procedure will now be described in detail with
__ • ~. - .,:. -:...::,;. - , ..•,:. .~ _'.0 • . ~ ~_ •

the aid of the Calibration Flow Chart of Figure 29. Steps 1 and 2

on the flow chart require a selection or a stress ratio and a bend­

ing stress level. The true shear stress in the specimen groove to

give this ratio is found in Step 3 from the relationship

( .

where C1 . is the true bending stress in the groove and r is
. . ~~ s .

the desired stress rat;io~ Next, in Step 4~ the true bending stress

in the groove is converted to output stress in the groove using

~GR and then KGR- TH , the relationship between output bending stress

in the groove,is employed. On the torque side, Step 5 gives the

equation for converting shear stress in the groove to shear stress

in the tool-holder. This is a purely geometric relationship employ­

ing no calibration parameters. However, on the bending side an

empirical relationship was nece~sary because the bending moment

along the tool-holder shaft is not constant. For torque, it is a

safe assumption ~hat the torque applied along the tool-holder shaft

is constant. The static stress concentration factor is shear,Kts '

is included in this term. A published value of Kts ' 1.22 (26),is

used here. Also, in Step 5, the true shear stress in the tool­

holder is converted to outputstress. Steps 6 and 7 are the correc­

tions for interaction. The shear stress value is used to correct

bending stress and vice versa. The calibration c~efficients are

KT/ B and KB/ T• Steps 8 and 9 convert the corrected output stresses

to visicorder divisions, completing the procedure.
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A.. Conversion of Visicorder Outputs to Stress Levels

Once the visicorder divisions for bending and torque are deter­

mined according to the methods of Section IV-E, the test runs are

mape. A visicorder record is made and kept for each specimen. When.

a stress level is complete, the shear and bending divisions, and the

shear and bending calibration divisions, are measured on each visi­

corder record. These four values, along with the test number,

specimen number, the calibration resistances, the pan weight and the

. machine number,are punched on IBM cards.for computer analysis. A

computer program in Fortran IV has been prepared which gives the

actual shear stress, bending stress and stress ratio for each run,

as shown in Figure 30. It also determines. the mean and standard

deviation of the shear and bending stresses and the stress ratio for

each bending stress level assuming a normal distribution for this

data.

The program contains a number of "IF" statements which select

the proper machine number and mode for a data card·. The mode is

determined by the date on which 'the specimen was run.

MODE 1: For 26 July 1966 to 10 August 1967

MODE 2: For 11 August 1967 to 1 June 1969

MODE 3: For 1 June 1969 to next gage failure

A new mode is initiated whenever a strain gage on any machine fails,

necessitating recalibration. Thus, the computer program dif~erenti­

ates between past and present machine configurations. The program

is set up So that a new configuration can be integrated into the

data reduction by adding three "IF" statements and listing the new

calibration parameters. In addition, the program can accomodate

the stress ratio infinity as well as all finite ratios.

/
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strength were deter-
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B. Reduction of Endurance Strength Data for r = 00 and r = 0.90. s s

For stress ratios of infinity and 0.90,the increment used in

the staircase method (27, pp. 14-17) was one pound pan weight on

the short arm. Therefore, the results of the staircase method,the

mean and standard deviation of the bending stress for endurance, is

in terms of pan weight. It is now necessary to convert pan weight

to true stress.

Just like the finite times-to-failure runs, visicorder records

were made for the endurance limit runs. The visicorder records

were measured, the data placed on computer cards, and a computer

. run made, just as described in Section V-A'. Only' the points which

were used in the staircase method (successes or failures) were used.

The output contains the bending stress levels, torque stress levels

(r = 0.90 only) and the stress ratios (r = 0.90 only). Also the
s s

/

mean and standard deviation of the data 'set as a whole is outputted;

however, these are meaningless for endurance runs, hence are dis­

carded. However, ~he stress ratio is needed.

For a given pan weight, all the bending stresses for that pan

weight were averaged. This was done for each pan weight. The

result was the mean true bending stress for each pan weight.

Next, the true bending stress in the groove was plotted against

pan weight for both r = 00 in Figure· 31 and r = 0.90 in Figure 32.. ·s·s

Straight lines were then fitted.to the points.

and standard deviation, aS ' of the endurance
e

mined in terms of pan weight by the staircase method (27, pp. 14-17),

Figures 31 and 32 made it possible to relate pan weight to t~ue

stress. The results are as follows:

. For r = 00
s_.
S =' 25.5 lbs= 61,500 psi
.e
aS = 1.34 . lbs = 3,500 psi

e



.~:c<::c- :For ..r:'· = 0; 90
''''.'," .'., .~_:'. .~. 5.. _ ...

,_.. ,,~ ..... :S = .26.0 lbs.= 61,000 psi.. "~'" . -~·;"--e· ..- -

:::=~,~:~:,.~~ ..:;:-'_;':; :~:-...::.:,\~_:..::,_aS". ~ .2 •..~.~~_lbs ~ 3,000 psi
e

. !Jz;;T'G:'The:mean· and :standard deviation of the stress ratio for r s =

53

~'~'9~ 'fr~m the _dat.a reduction computer program,. given in Appendix B,

iho~'gh printed ou't, are -ri'ot intended for any use . The program is

.l~~::rs~d fo~- iinite-'life data; hence it automatically calculates

/'



C. Generation of S-N Diagrams Using Distributional Stress Levels
and Mean Cycles-to-Failure

The reduced data of Appendices A and B provide the mean and

standard deviation of each stress level. With these distributional

parameters and the corresponding mean cycles-to-failure data ( 27,

pp. 52-54 ) it was possible to construct S-N curves for r = ~ ands
r s = 0.70, with the 3cr limits of the distribution of the actually

applied bending stresses also given, assuming the stresses applied

are normally distributed.

The S-N curve for r s =~ appears· in Figure 33 and for r s = 0.70

in Figure 34.

/

54 '
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D. Generation of Theoretical S-N Diagram

It would be interesting to compare the·S-N diagram results gen­

erated in this research with a theoretical S-N diagram constructed

~ccording .to the procedure recommended by Shigley (23, p. 162).

The fatigue strength of specimen,Se,at 103 cycles = 0.9SU'"

Su = 178 ksi , for unnotched· specimens

./

.'

The endurance strength is given by

For the specimens used in this research

(4)

ka = surface finish factor = 0.89 for ground finish (23, p. 167)

kb = size factor = 0.85 for D = 2.0 in. bending .

.. Kd = temperature factor· = 1, no temperature effect

(23, p. 168)

f.



.. '.~'

""':, -_c:k ~,' :=-:-'~tr-~ss concentration design factor
e

- . , - . - .. '

~ = 1 + q (K
t

- '1)
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(23, p. 170)

(23, p. 170)

-q = 0.92 -.< '
. '.. -':

, (23, p. 171)

,K
f

= 1 + 0.92 (1.45 - 1)

K
f = 1.41

/

k
1

0.709=---, e' 1.41

kf = miscellaneous effects factor = 1

(26, p. 49 )

S t

e
= theoretical endurance str~ngth = 0.5 S

,U
(23, p. 162)

s =178 ksi
U

Therefore

S t = 0.5 x 178 = 89 ksi
e



\

Using Equation 4

S- (0.89)(0.85)(1.0)(0.709)(1.0)( 89) = 47.7 ksi
e

,
With Sand S thus determined, an S-N d~agram'was plotted ande - e

10
3

is given in Figure 35.

.-
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VI. STRESS CONCENTRATION AND NOTCH SENSITIVITY EFFECTS

A. Stress 'Concentration

The best published value of the static stress concentration

factor for the notched specimens used in this research is 1.45 (26).

In Section IV-B-2.i, an attempt was made to isolate the effective

static stress concentration factor from ~~. The resulting value

was 1.28. Since the experimental value was arrived at by an averag­

ing technique rather than by a rigid procedure of measurement, there

is room for error in this result. Likewise, the published values

leave much to be desired since they do not take into account the

test conditions. It was felt that the experimental value was a

definite improvement over the theoretical value and was used in

the calibration procedure to determine t~e bending stress in the

groove. The accuracy of the result could be improved upon by out­

fitting more specimens with strain gages and repeating the cali­

'bration. The same reduction technique would be used but more data

points would be had to average, thus increasing the accuracy of

determining the effective static stress concentration factor.

For the torque strain gage 'bridge a published value of the

static stress concentration was used. There is an error involved

in this also, as the exact stress concentration factor in shear is

not known at this time. It is believed that any corrections would

not be in excess of 5 percent. Nevertheless, further investigations

should be initiated to obtain a better value for the static stress

concentration factor in torsion.
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f: ¥:.e, :~o!ch Sen13 givity Survey._

>·,,,",.In.fatigue. tests tl1e reduction in fatigue strength is found to
<-... ~ ~, ••-' '--. • - _ •• _. -

-, be_.l~ss. than that predicted. by the static stress concentration factor,
~.- .:. ~ ...... -- . ,- . - .. -- - .- . -

rJ\ f~4-, p. 249t· :;-,The ratio of the nominal fatigue strength of an

:-~.m!1otched specimen to that ~ of a notched specimen is defined as the........- --.- - -. -..;. - - _.

T:f~t~g;ue stress-cc>D<;:eI!tration factor, Kf . Kf has also been called the

strength reduction factor, the fatigue notch factor, and the effec­

tive stress concentration factor. Therefore, Kf can be experimentally

determined by forming the ratio (23, p. 170)

= endurance limit of notch-free specimens
endurance limit of notched specimens (5)

where S' is the
n

(22, p. 128).

The reduction in fatigue strength is explained

.the theoretical peak stress K S is lowered to KfStn, n
nominal stress in the,corresponding

by the fact that

by plastic flow,

unnotched specimen

It is also useful to define the notch sensitivity factor as

(23, p. 170)

K
f

- 1

q =15
t

l'

If q = 0, then there is no sensitivity'for the notch; while if

q is unity, Kf = Kt , and there would be no observed redyction in the

fatigue strength of notched specimens. This would be the case for

perfectly elastic materials (25, p. 244).

The notch sensitivity is a very useful but also elusive para­

meter. As the notch radius increases, q tends toward unity as shown

in Figures 37, 38, 39,41, and 42. q also tends to unity for fine­

grained, relatively homogeneous materials (23, p. 172) as shown in

Figure 40. Notch sensitivity is also a function of the size of the

part. Kf may be higher for large parts than for small parts (24,

p. 251). Steel generally has a higher q than lower grades of iron

i 1



(23~ p. 172). This can be explained by the relative grain sizes.

At low cycle life~ fatigue strength in notched speci~ens can be a

little higher than notch-free specimens (25~p. 246). Finally~q

may also be a function of the stress amplitude (25~ p. 246).

Peterson~ (26) a widely used reference on notch sensitivity~ does

not take this into account.

;/
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c.' Proposed Notch Sensit i vity Determinat ion '

Unlike the value of the static stress concentration factor, the

notch sensitivity of the test specimen is critical. The calibration

method which was used to determine the stress concentration does not

incorporate notch sensitivity because it was a static test •

. In the calibration procedure, the notch sensitivity effect was

not included. The reasons for this are:'

1. 'An experimental notch sensitivity determination has not

as yet been carried out, .and,

2. The published data of Section VI-Bindicate that the, notch

sensitivity effect will be very small, perhaps 2 or 3 per

cent. Such minor adjustments to the stress levels can be

made at a later date if deemed appropriate.

Due to the irregularities and apparent contradictions in the

no~ch sensitivity, the most accurate method of determining the appro­

priate value of q for the SAE 4340 notched steel specimens of this

research is to do it experimentally. ' Then shape, size, and material

errors would be eliminated. K
f

, 'and consequently, q, can be determined

experimentally by Equation 5.

It is proposed that unnotched specimens similar to those used

in the r = 0 studies for this research be prepared. The number
s

needed would be approximately 38. This is the amount needed with

the staircase method of endurance strength distribution determination.

Only the unnotched specimen need be run since notch endurance strength

for r =~ has already been generated. The proposed test would give
s

an accurate value for the notch ~ensitivity of these specimens.

\.
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VII CONCLUSIONS

1. The fatigue machines are extremely difficult to calibrate

dynamically. Attempts were made over a period of one year to obtain

valid dynamic calibrations but were abandoned because of large incon­

sistencies in the results. Finally, the static calibration procedure

reported here was embarked upon and was successfully completed.

Since all calibrations except one are'gage calibrations, there is no

error introduced by not calibrating dynamically. The determination

of exact specimen groove stress from the toolholder gage bridge out­

put does, however, require dynamic calibration 'so that the true'

fatigue stress concentration factor in bending can be determined.
'I '

The determination of this factor requires extensive research and the

minor improvements achieved mayor may not be of the desired quality
"

in view of the difficulties involved.

2. The calibration procedure is set up so that if a ~age fail­

ure occurs, the fatigue machine may be recalibrated and put back into

operation in three days.

3. Machine #1 has the followipg calibration equations:

N NGR [. ' , '.
= cal a cal (0.967)(0.0203)0 " +

E R true
GR

'
. ,gage . , '

(O'.0548h t ]
. ·ou TH

= NcalNaGRcall<o.0157) . '
. E R (0.882) 'true

GR' ,gage' \
+ (0.0298)0 t "]

ou TH

4. Machine #2 has the following calibration equations:



N N GR [ '. .= cal a cal (0.902)(0.0198)0
E,Rgage .. trueGR

+ (O.0343h t ]
, ou TH
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N N GR [ . ,= cal a cal (O.0157)T +
E R (0.840) true

GR
,

.' ,g,age
(0.0410)0 't ]

ou TH

5. Machine #3 has the following,calibration equations:

N ' N GR [ " 'J'-cal a cal= E R (0.972)(0.0215)0
,~age . trueGR ,

(-0.0238)0 t ]
. ou TH

Note that there is no torque interaction into the bending channel for

Machine #3 and that the bending interaction into the torque channel

is n,egative.

6. The axial stress in the specimen was found to be negligible.

7. The effective static stress concentration factor of the spe­

cimen groove in bending was determined to be 1.28.

8. The data reduction shows that the machines were very success­

ful in maintaining and reproducing the torque and bending loads. With

other past machines difficulty has been experienced in maintaining

constant bending and torque loads.

9. From ~igures 33 and 34 and Appendices A and B, it may be seen

that the fatigue reliability research machines maintained the desired

bending stress levels with a coefficient of variation of less than

2.7% for r =w.and less than 5.6% for r = 0.70.,s s
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'10. From ~igure 34 and Appendix B, it may be seen that the coef-

ficient of variation did not exceed 8% and for the most part was less

than 6% for the stress ratio.
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VIII RECOMMENDATIONS

1. Calibrations, test runs, and data· reduction would be

greatly expedited if the amplification system was improved upon.

Presently, amplifier drift must be carefully taken into account

on each run, consequently, a relatively drift-free amplifying and

recording system, with a very short warm tip time, should be ob-

. tained.

2. A pan weight versus true stress in the groove calibration

should be conducted. Although, like the determination of KBTH '

this relationship would not be an integral part of the calibration

procedure, it has a wide variety of uses during daily operation

of the fatigue machines; e.g., in determining the pan weight

directly from the required bending and shear stresses.

3. The notch sensitivity determination proposal for bending

should be undertaken, thus insuring that this dynamic phenomenon

has been accounted for in the calibration procedure.

4. Now that experience has been gained in running the ma­

chines, the staircase method for determining the endurance strengths

can be improved. Increments of bending stress rather than incre­

ments of pan weight should be used because they are more reproducible.

5. Research with these machines shouid be continued and ex­

panded to include other stress ratios, notch geometries, and mater­

ials.

".
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~~nding stress level in groovE

,,~

Stress ratio

99

2- C1true
GR

1--

Shear stress

T
trueGR =

r s

level in
C1trueGR
r s fi

groove

4--

Output stress in groove
C1 =K a 'outGR BGR true

GR

Output stress in toolholder

a = K C1outTH GR-TH out
GR

Shear stress level in
toolholder

1 CTH J GR
T =--'---- T5-- trueTH Kts J TH C

GR
true

GR

ToutTH =TtrueTH/Kr

Output stress in toolholder
corrected for torque

6-- interaction "
a' =a + K_ T. outTH outTH -lIB out

TH

Shear stress level in
toolholder corrected for

7-- bending interaction
T' = T + K aoutTH outTH BIT out

TH

i
I

8--

Visicorder bending
output

N' N G R_cal , a cal
N. - E R
v1sB gage

level

'\

9--

Visicorder. torque level
output

N N G R= cal a cal~,
N • E •V1ST ' Rgage out

TH

\.

FIGURE 29. THE CALIBRATION FLOW CHART.
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.! 114,

I,

,INSTRUMENTATION
..-------'----_._..--- -

,~--------'------'-Part-·---·--------_.~--- - Catalog,
:';;:=.-Name"::'-" ~:Number: . 'Manufacturer' 'Numbe'r ":~ Remarks
.,:::-- ~< ---

A;,;LMetalfilm 321+B,...190, The Budd Co.
~-strain-- -.-----,-,----Instruments

~gages with Division
,leads _ _, _", _:,:..

BG2400 4 Bending moment­
shank of tool
holder

, '

..~

'.".rr ,' ...
":i,"!-

Bending moment
groove of speci­
men

'Torque-shank of
'tool holder

2

2

".. :

" II

. ,':: . 'i

, " II,.

. ".

-~ : ...,"

. ~ .

.~,,--, -..-

II

Metalfilin '
~train
gages with.
leads

Metalfilin- ~ ':3 X 4 '~.-

strain ,- M15E-240, ~,_ '. '
gages with 'r,.. ; "

leads, ' ;0:',' • ,'-:

:::!.i. :.: ':
C6-121~1 "
R2VC

~.,.Slip ,AJ-8005--,Breeze Corp- 66SR
\,'rings 'andi, A8 ,.oration~ Inc.
~hrushes ' '-.. , .

1 Transfer of
, 'data

'Visicorder 906 C-l ,~,Honeywell , D-:2009 1, With grid line
system, 14 mag­
netic assembly
channels

'Amplifier 119

Galvano':"
, meter

M1650 ," II D-2007

D':'2005

6,

6

0-5000 cps

Carrier and
linear/integrat­
ing system with
carrier channels
0-5000 cps

,'.

----_ ...- - -__~ ..-. -----.~--"f"..--~ ..--
". : - ~. -... - -- - ~

" ' "



TABLE 2

_m,,,,,,,.~';:..,.n,,J.'O.oLHOLDEROUTPUT VERSUS -PAN WEIGHT DATA
,;'J.):~:"";':::: .. " .. "FORBENDING BRIDGE CALIBRATION

.:.r-·t}~:~ :.:._~' ..- _ -'-'

115

MACHINE '#1 MACHINE #2 ... MACHINE #3

Data Too1ho1der Pan Too1ho1der
Poiti1:---. ":Output· ""'--'Weigh1:"'-""O,itput

Number~'" 'div. . '·llis. . .div•.

Pan
Weight'
.1bs •.

Too1ho1der
Output

dive

Pan
Weight
lbs.

1
"
2--:2-------0-.--·-·---·3.5 0 2.4

.- .. c: "f ",: •

2 2_~3. 9 30.81 6.8 10.27 14.4
... ""'.'

3 .:~5. 6 61.62 10.3 20.54 23.6
' . .:::- ..

4 17.8 41.08 13.5' 30.81 '18.6
'L.- :: '- .. ,

5 . 9.9 20.54 17.2 41.08 22.4......-.-

6 21.3 51.35 21.0 51.35 7.0 . ,

7 ,. 5.8 10.27 24.9 61.62 10.8

8 2~1 0 20.8 . ~1.35 3.0
-... - -

9 9.7 20.54 17.1 41.08 10.7

·10 17.3 41.08 13.4 30.81 22.1
, .

11 25.1 61.62 ·10.0 . 20.54 18.5-.
.'

12 21.2 51.35 .6.0 .10.27 26.1

13 13.3 30.81 2.1 0 14.4

14 5.8 10.27 6.7.,.._.

15 2.0 0 2.• 7..
16 5.6 10.27. 18.1

17 ... 17.1 41.08 25.8

18 ."' . 24.8 61.62 6.5

19 13.2 30.81 14.3
..

20 21.0 51.35 . 10.4

21 9.5 20.54 21.8

22--· ...--.--. 1. 7 .. ·..·.. ··--·0 "2.5

Visicorder Calibration Resistances:
Machine #1 - 500 kfl at 24.9 divisions
Machine #2 - 500 kfl at 25.2 divisions
Machine #3 - 500 kO at 25.0 divisions

o
30.81

61.62

41.08

51.35

10.27

20.54

o
20.54

51.35

41.08

61.62

30.81
..

10.27

o
41.08

61.62

10.27

3.0.81

20.54

51.35

o

r .

',.7'
i-
'.

J .~ :,

!: :.
~ ....,..
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TABLE 3

TOOLHOLDER OUTPUT VERSUS PAN WEIGHT DATA IN INCREMENTAL FORM
FOR BENDING BRIDGE CALIBRATION·IN TERMS~£.CHANGE

IN TOOLHOLDER OUTPUT DIVISIONS
FOR 10.27 LBS. OF PAN

WEIGHT

Data Point:·· .Machine #1 Machine #2. ' Machine #3
, .Increment ," . . . . . . . . . . . . . . ......

, 1-2 ' 3.90 3.3 4.00..
'·2-3 3.90 3.5 3.96

3-4 3.90 3.2 3.85

lJ-5 ... 3.95 3.7 3.80

5-6 3.80 3.8 3.85

6"7 3.87 3.9 3.80

7-8 3.70 4.1 /, 3.90

8-9 3.60 3.7 3.85

9-10 3.80 3.7 3.60

10-11 3.90 3.4 3.60
'.

11-12 3.90 4.0 3.80

12-13 3.95 ' . " 3.9 3.'90

13-14 3.75 3.85

14-15 3.80 4.00

15-16 3.60 3~85

16-17 3.83· O' 3.85
I'

17-18 3.85 3.86

18-19 3.86 ·3.90

19-20 3.90 3.90

20-21 '3.83 3.80

21-22 3.90 3.86,

Average ' 3.838 3:683, ' ,3.850,
..

116
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TABLE 4

CALIBRATION SPECIMEN GROOVE STRAIN GAGE
. OUTPUT VERSUS PAN WEIGHT DATA

. . . . . . . . . . . . .... . . . . . .

.. MACHINE, #1 ' " MACHINE· #2 MACHINE #3

Data Groove Pan Groove Pan Groove Pan
Point Output Weight Output Weight .Output Weight

.__Number lJin/in Ibs. ,dive , . ' .. Ibs~, , .. lJin/in, ' .llis.

1 39670 0 0.1 0 39655 0

2 40190 30.81 " '2.3 10.27 ' 40174 30.81

3 '., 40703 61.62 4.6 20.54 40695 61.62 ,.1.' "
'" .. ,.~.

! 1 4 40357 ' 41.08 6.9 30181 40346 41.08

5 40015 20.54 9.4 , 41.08 40518 51.35
:1'::,

6· 40539 51.35 11.6 51.35 39825 10.27 . ..... . ~.' -: !: ,... .'
'; ",

.. : ... #'~,,!-

7 ~9838 10.27 '14.2 61.62 39998 20.54

8 39668 0 11.4 51.35 39655 0

9 40013 20.54 9.1 41.08 39998 20.54

, 10 ,40357 '41.08 7.0 30.81 40516 51.35

11 40697 61.62 4.8 20.54' ' 40345 41.08

12 40527 51.35 2'.5 10.27 40785 61.62

13 40182 30.81 0 O. 40172 . 30.81

14 39834 10.27 39825 10.27

15 39661 0 39655 0

16 39834 , 10.27 40345 41.08

17 40351 41.08 40687 61.62

'18 40691 61.62 39824, 10.27

19 40181 30.81 40171 30.81

20 40522 51.35 39995 20.54

21 39005 20.54 40514 51. 35 .

22 39661 o· .. 39654 0

Visicorder Calibration Resistance ,:

Machine #2 - 30 kn at 25.0 divisions



TABLE 5

REDUCTION OF MACHINE #2 DATA GIVEN IN TABLE 4

118

L. .,.
Change in Too1ho1der
Output in Divisions--- ------_.._-- -- ..

" . per 10.27 lbs. of Pan
... '.'~ :~.': .•.: .. ~ ~' We.ight· .

; .....

~ :..

.:.:

2.2

2.3

2.3

2.5

2.2

2.6

2.8

2.3

2.1

2.2

2.3

2.5

:/

, .

--------..---_., ..

::~:::~.: .. :.
~ ..;~:~: ~~

.... 4 • .~ ~ .~ "'._

' ...3-:-4
"-i '.~. '.~ .. ~". <' :

.. 4.,.5

.5-6
.~:: :_: ': - .

6-7

.. .7-:-8.
~......~ --....-

·---,~-_:_·.:.,-S-9.-~~---·.--.~_ .... ·.

9-10' ':':'~ ,

. -10-11---,-~-----_._·--, .....

11-12

12-13

. ---------,~-

-.

Aver,age 2.358 divisions
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TABLE 6

REDUCTION OF MACHINES #1 AND #3 ..
DATA GIVEN IN TABLE'4

....... ','

MACHINE #1 ' , 'MACHINE #3

Pan Average - ,bStrain Average bStrain
Weight Strain Strain

--, _.1bs. llin/in -}Jin/in, ' , ,pin/in, , pin/in

0 39666.3 '169.0 39654.7 170.0

10.27 39835.3 175.7 39824.7 - 172.0..- '.

20.54 40011.0 173.3 ' 39996.7 , 175.6

30.81 40184.3 170.7. 40172.3 173.0

41.08 40355.0 174.3 ' 40345.3 171.7

51.35 40529.3 170.7 40516.0 173.Q

61.62 40697.0 40689.0

-Average 170.7 172.7

I.

. "
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TABLE 7

TORQUE.OUTPUT VERSUS BENDING OUTPUT DATA
FROM TORQUE INTO BENDING INTERACTION CALIBRATION

> .

; .

....." . . ............. ',' ....

. .MACHINE. #1 MACHINE. #2 .... .MACHINE #3

Data Torque Bending Torque Bending Torque Bending
Point . Output Output Output .Output Output Output

Number· dive dive dive .. .. div. ....... .div. dive

1 B.B 11.6 5.6 17.6
2 41.9 10.0 14.9 IB.3
3 8.8 11.8 23.8 18.5
4 '41. 7 10.2 32.4 18.9
5 33.9 10.6 40.4 19.0
6 25.7 11.1 . 32.5 18.6
7 17.4 11.6 23.9 IB.3 .
8 B.8 12.0 14.9 18.0
9 . 17.3 11.5 5.7 17.6

10 25.3 11.3 14.9 17.9 . SEE DATA
11 34.0 10.8 23.7 18.1 REDUCTION
12 41.9 10.4 . 32.3 18.3
13 8.8 10.9 40.3 18.8 IN SECTION
14 32.4 1B.5

. 15 23.8 18.2 IV.-B~3

16 14:9 17.9
17 5.6 17.6
18 5.3 12.9
19 14.5 13.1
20 23.4 13.3
21 32.2 13.6

. 22 40.2 13.8
23 32.2 13.6
24 23.5 13.5
25 '14.6 13.2
26 5.3 12.8

Visicorder Calibration Resistances:
Machine #1 - Bending 500 kn at 25.0 divisions

.Torque304 kn at 45.0 divisions
Machine #2 - Bending 500 kn at 25.0 divisions

Torque 30 kn at 44.7 divisions
Macaine #3 - Bending 500 kn at 25.0 divisions

To~que 304 kn at 45.0 divisions

, ,"
.,,"

" i
. J

...
, I

"'.;
. '.
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TABLE ' 8

rOOLHOLDER VERSUS GROOVE BRIDGE OUTPUT DATA
. FOR"QUASI:-STATIC CALIBRATION OF GROOVE STRESS

MA~.l!~~~ __.#:!:., ._- __. MACHINE #2---_._--_.

,43.9 31~7 34.7

39.9 29.3 30.0

35.9 26.4. 27.7·

, 32.7 23.9 23.7

, 29.2 21.5 20.1

25.7 18.9 '23.1

22.0 16.4 27.0

25.8 19.2 30.0

28.8 21.3, 33.9

33.3 24~3
\ ... 36.2,

36.1 26.7

40.2 29.3

44.0 31. 7

i
:~', \

j

I. !

['
j'{ 1

i'

,.

.. :.;:
• lil';' .;.; ~

. :".

," :,
.~ ~::'::':'..:'-~~_"-,_• .1 ...

MACHINE #3

Toolholder Groove
Output Output

. .div .. .div•

25.0 26'.8

28.6 ,41.8

32.0 47.3

39.1 57.0

21.6 31.9

25.1 36.3

'28.2 40.9

32.4 46.2

40.0 56.0

21.7 31.3
-

25.2 ' 36.3

28.8 41.3

. 32.0 46.6

',35.3 50.3

3Ll

'36.2

41.3

45.3

56.0

52.8

5p.7

44.6

. 40.6

34.3

30.5

34.8­

39.9

43.6

49.3

52.2

20.0

23.9

27.2·

" 30.3

37.6 '

16.2

18.6

21. 7...........

24.2

26.1 -

Groove Toolholder Groove
Output Output Output
.. div·.·, .. , .' .. diVe '~" , , ,div..

2 25.1

3 .' ..29.1
-l~2,:::: :'-;,'.~ . :"

4 33.1

, 5 36.1

~ ~_.__ 40. _~_'_..:.__~_~_.:3 :_._--- 36.6

7

8

9

10

11

12

13

14

15

16

i7
18

19

Data. Toolholder
Point Output

Number ... ' . ,div •

Visicorder Calibration Resistances:
Machine #1 Toolholder 200 kn at 24.9 divisions

Groove 22.22 kn at 24.9 divisions
Machine #2 Toolholder 190 kn at 24.8 divisions

Groove 11 kn at 24.6 divisions
Machine #3 - Toolholder 190 kn at 25.0 divisions

Groove 11 kn at 25.0 divisions'
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TABLE' 9

TABLE 8 VISICORDER DIVISIONS CONVERTED TO.STRAIN
IN TOOLHOLDER AND SPECIMEN GROOVE

122

, , .
• ,1.•

6Nvis 6EToo1ho1der 6NvisToo1ho1der groove
div. , ,pin/in div.

Machine #1

Machine #2

Machine #3

1 :,'

22.2

40.0

10.7

.,

,I I

.,

32.85

62.40

16.55

15.75

59.0

15.0

:-~ .

M.groove

pin/in

1620

3145

786

1:;-
;,:

. j:
'., t'

I'
i'

.1
•
!

t .'.~

i
. i.
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TABLE 10

TORQUE OUTPUT VERSUS PAN'WEIGHT DATA
FOR TORQUE BRIDGE CALIBRATION

," 123

MACHINE #1 MACHINE #2. .MACHINE #3 . .""'.

Data Torque Pan . Torque Pan Torque Pan
Point Output Weight Output Weight Output Weight

Numbeza div. lbs. . .div•. .... l.bs •. . div•. lbs.

". ",

1 8.8 0 5.6 0 5.4 - 0
·2 41.9 41.08 14.9 10.27 13 ..2 10.27

3 8.8 0 23.8 20.54 21.1 20.54
4 41.7 41.08 32.4 .30.81 28.6 30.81
5 33.9

_.
30.8. 40.4 41.08 ' 35.9 41.08

6 25.7 20.54 32.5 30.81 28.5 30.81 .... ____ ":1., ..,~
7 17.4 10.27 23.9 20.54 20.8 20.54
8 8.8 0 14.9 10.27 .. 12.9 10.27
9 17.3 10.27 5.7 0 5.1 0

10 25.8 20.54 14.9 10.27 5.2 0
11 34.0 30.81 23.7 . 20.54 13.1 10.27

· 12 41.9 41.08 32.3 30.81 20.9 20.54
13 8.8 0 40.3 41.'08 28.6 30.81
14 32.4 30.81 35.6 41.08

· 15 23.8 20.54 28.3 30.81.
16 14.9. 10.27. 20.8 20.54 .
17 5.6 0 . 12.9 10.27
18 , "

5.3 0 5.4 0
19 14.5 10.27
20 23.4 . 20.54
21 32.2 30.81
22 40.2 41.08

· 23 32.2 30.81
24 23.5 20.54
25 14.6 10.27
26· 5.3 0

Visicorder Calibration Resistances:
Machine #1 - 304 kn at .45.0 divisions
Machine #2 - 304 kn at 44.7 divisions
Machine #3- 304 kn at 44.5 divisions



Machine
No.

2"

'3

TABLE 11

, TORQUE REDUCTION TABLE
FROM THE RESULTS OF TABLE 10

Point Point 6W 6N
vis

6'[ , 6'[ .
A B lbs. out True

.... ",' ... . , , ,', , , , , ,dive ' ,psi, , , ,psi,

(30.(),'33.0) (10.0,17.0) ,20.0 . 16.0 513 " 452

"

(40.0,40.0) (5.0, 10.5) , 35.0 29.5 943 ' 792

(35.0,31.5) (15.0,16.5) 20.0 15.0 480 '452

124

Slope

I<.r

0.882

0.840

0.944

-,:.

. ,~

"

_. ... :.•. ~ •..,..._ ..~ ...... _.a:.
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TABLE 12

BENDING OUTPUT VERSUS· TORQUE OUTPUT DATA FOR BENDING
INTO TORQUE INTERACTION CALIBRATION

125

. . . . . . . . . . . . . . . . . . . . .

MACHINE· #1 MACHINE #2
......

MACHINE #3

Data Torque Bending. Torque Bending Torque Bending *
Point Output Output Output Output Output Output

Number div .. div•. div. . . . . :div•. .... - .. . .div • div •

1 ~0.1 0.2 0 2.7 -0.3 2.4
2 +0.5 17.3 0.8 21.0 -0;5 9.0 .,

3 -0.1 0.8 0 3.2 -0.8 20.1
4 +0.4 17.1 0.1 6.9 . -0.3 9.1
5 +0.2 8.2 0.3 10.5 0 1.1 ,,": ;

6 -0.1 0.5 0.6 14.1 -0.1 8.9
7 . +0.1 8.0 0.7 17.1 -0.7 20.2 . ,

I ......._ ....

8 +0.4 16.9 0.9 22.6 -0.3 9.0
9 +0.2 .7.8 1.0 25.2 +0.1 1.1·

10 -0.1 0.3 0.8 21..6 -0.5 8.9
11 +0.1 7.7 0.6 18.0 -1.0 20.2
12 +0.4 16.5 0.5 14.4 ~0.4 8.8
13 -0.1 0.1 0.3 10.7 +0.2 0.9
14 0.1 7.1 -0.4 8.8
15 0 3.3 -0.9 20.0
16 .)..0 21. 5 -0.3 8.9
17 ·1:2 25.2 +0.1 1.1
18 1.3 29.0 -0.4 8.8
19 1.5 32.8 -0.9 20.1
20 1.7 36.0 -0·.3 9.0
21 1.8 40.0
22 2.0 44.0 ..

23 2.0 . 44.2
24 1.8 40.5
25 1.6 36.0
26 1.4 33.2
27 1.2 29.5
28 1.0 25.8
29 0.8 22.0
30

*A11 bending data appears at 0.2 amplifier attenuation, therefore a 5/2
. .correction factor is required.

Visicorder Calibration Resistances:
Machine #1 - Bending 500 knat 25.1 div.; Torque 304 kn at 44.9 div.
Machine #2 - Bending 500 kn at 24.0 div.; Torque 350'kn at 44.8 div.
Machine #3 -Bending 500 kn at 25.0 div.; Torque 350 kn· at 44.8 div.
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. TABLE 13 .

. BENDING OUTPUT VERSUS TORQUE OUTPUT DATA AT HIGH TORQUE LEVEL
FOR BENDING INTO TORQUE INTERACTION CALIBRATION

126

Data Point
Number

. ,. MACHINE #2

Torque Output Bending Output
. .",div ~ . .. " , , , , " , , , , , ; 'div • .: . '.

1
2
3'
4
5
6
7
8
9

10
11
12
13 '
14
15
16
17
18
19

·20,
21
22
23
24
25
26
27
28
29
30

25.2 9.4
25.3 11.8
25.5 14.1
25.6 16.3
25.7 18.7
25.9 21.1
26.0 23.4
25.8 21.1
25.9 18.8 , ... _u

25.6 16.6
25.5 14.2
25.4 . .J 11.8
25.3 9.5
25.5 13.5
25.8 21.0
26.0 23.5
26.1 25.8
26.3 28.0
26:4 30.2
26.5 32.8
26.7 34.8
26.5 32.8
26.4 30.5,
26.3 28.0
26.2 25.8
26.3 . '28.0

,,26.2 25.8
26.1 23.5
25.9 21.0
25.4 13.7

Visicorder Calibration Resistances:
Machine #2 -, Bending 500 kn at 25.0 divisions

Torque 350 kO_at 44.8 divisions



TABLE 14

AXIAL OUTPUT VERSUS BENDING OUTPUT FOR AXIAL TO
BENDING INTERACTION CALIBRATION

MACHINE #1,

127

Data Point
,Number

Bending Level " Groove Bending
, ,'div., , .. , .. , .Mean ' ' div. '

1

2
, 3 '

4

5

6

7

8

9

10

11

12

13

20.8

'24.2

27'.9

31.5

35.0

'38.7

41.9

19.6

42.2

19.7

,41.9

19.4

41.8

:\

-0.2

-0.5

-0.5

-0.6

-0.9

-1.1

-0.8

o
-1.4

+0.2,

-1.0

+0.3

-1.0

Visicorder Calibration Resistances:

Machine # 1 - Bending (toolholder) 190 kn at 50.0 divisions
Bending .(groove) 290 kn at 50.0 divisions

. - '.



TABLE 15

AXIAL OUTPUT VERSUS TORQUE OUTPUT FOR AXIAL LOAD
INTO TORQUE INTERACTION CALIBRATION

I' MACHINE #1

Data Point Torque Level 'Groove Axial

,Number, ' div. Mean dl.v.
... -.- . - ....

1 0 -0.6

2 11.8 +0.3
3 ' 36.7 +1.8

4 27.1 +0.8

5 1.5 .-1.2

6 40.0 +1.5

7' 21.5 +0.5

8 7.8 -1.5

9 1.1 -1.9

10 31.3 +2.0,
11 41.5 +0.8

12 27.6 +1.0

13 15.6 0

14 0.5 -1.8

Visicorder Calibration Resistances:

Bending (groove) 290 kn at 49.8 divisions

Torque 304 kn at 45.0 divisions

,
'--
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TABLE 16

.THE CALIBRATION COEFFICIENTS FOR EACH
RESEARCH MACHINE

Machine .. l<aGR :KGR- TH .' ..~ K.r/B ~/T

1

2

3

.. 0.967

0.902

0.972

0.0203 .

0.0198

0.0215

0'.882 0.0548

0.840 0.0343

0.944ft 0.0000

0.0298

0.0410

-0.0170**

,
i

i
.• 1. i
. !

....,.,' II, .

. ' ~. I
,.· ...1~ \. __ .

*After June 1, 1969

**After June 1, 1969

= 0.842 because of gage replacement

'~/T =-0.0238 because o~ ~age replacement

.
I
I
I
!
I,.
I
I.



.. ,psi, , , , , , , ' ,div.

'i :,TABLE 17

TCF:.QLC /::~:~STRESS LEVELS AND VISICORDER DIVISIONS
FOR"r = 3 AND MACHINE #1s

.. '

Alternating Bending Calibration Mean Shear
Bending Divisions Div/Resistance . Shear Stress DivisionsStress .-'.--.. ,- --.-.- - ---- -.".-..,..- -.-.-- .

psi div. . div/kQ

130

Calibration
Div/Resistance

div/kn

154,800

121,800

104,350

86,800

77,700

43.5

34.2

44.5

37.0

33.2

50/125

50/125

50/190

50/190

50/190

29.800

23.400

20,080

16,700

14,950

19.4

15.3

13.1

10.9

9.8

45/304

45/304

45/304

45/304

45/304



i
TABLElb

TORQUE OUTPUT VERSUS PAN WEIGHT DATA FOR NEW TORQUE GAGES,
MACHINE #3, JUNE 1969

131

. Data Point TOl....que Output Pan Weight
Number .div. dive

1 3.3 0

2 13.1 10.27

3 22.6 20.54

4 31.3 _30.81

5 40.6 41.08

6 31.9 .'30.81

7 22.6 20.54

8 13.2 10.27

9 3.4 /

·0

10 13.2 / ':'0.27

11 JJ. '7 .',54

12 31.9 30.81

13 .40. '! :';·:"09

14 31.9 20.54

15 22.7 '" ~ -4~t: .. :>

16 13.3 1.0.27

17 3.4 ,.,
v

......- ...._-,.._.._...

Visicorder CalibraLion Res~sLance:

Machine #3 -304 kfl at 44.8 divisions



,'c.:.-·- _
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," TABLE 19
:: .:

BENDING OUTPUT VERSUS TORQUE OUTPUT DATA FOR NEW TORQUE GAGES,
MACHINE #3, JUNE 1969

,.
".: l-
: -'-..

Data Point ~~BenC!ing Output Torque Output
Number .div. div.

c' . -
-c· c·

1 :- .. 4.4 0;.. c

2 - 7.9 : -0.10
3 .;;: 11. 5 -0.20
4

c
15.1 -0.40-~_:. :::

.<, -::~ ~

5
:..., . ,

18.6 -0.45.... ~-.

6 22.2 -0.·70
7

.<
~25. 8 -0.75

<

8
'.- , 30.0 -0.90<" ':

9 .. - 33.5 -1.00-
10 30.0 -0.90
11 "'- .26.0 -0.75
12

,.
22.5 -0.75":. -- c

13 :- - 19.0 -0.60
,-

14 15.4 -0.40
15 11.9 -0.25

.C ;.

16 ., 8.4 -0.20..
17 ,. i..- ~ ,

4.8 0,-. '.

18 4.9 0
19

~ ,33.5 -1.00
20 5.5 0
21 ,. -- ,.. c :33.5 -1.00
22 - 5.3:'· 0
23 33.5 -1.05
24 5.5 0

Visicorder Calibration Resistances:
Machine #3 - Bending 490 kQ at 25.0 divisions

Torque 304 kn at 45.3 divisions

.,­
'"
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APPENDIX C

OPERATING CHECKLIST FOR NASA
COMPLEX FATIGUE RE'SEL\RCH MACHINES

TO INSTALL SPECIMEN

1. Turn power off at the wall - block up loading arm.

2.' Choose correct specimen for test using data book.

3. Prepare specimen for test.
a) Inspect specimen for defect or damage
b) Clean any oil or foreign matter off specimen

4. Clean inside of toolholders.

5. Clean collets.

6. Use WD-40 on collets - insure there is no binding.

7 •.· Block up one' s ide of loading arm with support: bolt.

8. Insert specimen and install collets.

9. .Block .uP other side of loading arm with support bolt.

lb. Level.the toolholder arms using the support bolts.

11. Place coupling gauges over th~ flex couplings. Be sure
the coupling gauges fit snug.

12 •. Check the toolholder arms to see if they are still level.
If not, adjust the support bolts to make the arms level.

13. Install keys in specimen.

14. Center specimen in toolholder.

15. Tighten outboard side (with strain gages) of specimen by
hand •

. 16. Tighten outboard side of specimen using the wrench. Make
sure it is very tight as it cannot be tightened again.
after this step.
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17. With the inboard side (without strain gages) still loos~~
place brushes on the slip rings. They should be firm
against the rings, but not bent tight.

18. Zero the instrumentation.
a) . Turn milliammeter to "in"
b)
c)
d)
e) .
f)
g)

:·h)·
·i)

j)
k)
1)

m)

Check B+ (5 volts) - Bridge Balance Switch to "B+"
Check GV (5 volts) - Bridge Balance Switch to "GV"
Turn Bridge Balance Switch to "BB"
Turn Channel Selector to desired channel
Set Atten.Switch to desired level
Use C. Bal. to "dip" voltmeter
Use R. Bal. to."zero" milliammeter
Repeat (g) and (h) until minimum voltmeter reading
and zero milliammeter readings are obtained simul­
taneously
Lock C. Bal. and R. Bal. controls
Take a short visicorder. run
Repeat (e) throught (k) for each channel to be
used in the test
Turn milliammeter switch to "out"

19. Calibrate the instrumentation.
a) Connect to Ext. Cal. the appropriate value of

calibration resistance
·b) Using the gain control, obtain the appropriate

deflection on the visicorder (some adjustment of
the R. Bal. may be necessary) - do. not change
C. Bal.

c) Take a short visicorder run for each deflection -
be sure instrumentation is calibrated for both bend­
·ing and torque.

2~. Tighten the inboard side of the test specimen.

21. Remove flex coupling gauges.

22. Clean the specimen and specimen groove.

23. Lower support bolts. Make sure horizontal link is not
resting on a support bolt (check both sides).

24. Lower the loading arm - no pan load.

·25. Check to see if pins are loose and all nuts are tight.

26. Check to see if bearings are vertical.
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27. Check to see if vertical link is vertical.

28. Check to see if brushes are still correctly on the
sliP. ri.ngs.

29. Rotate machine .byhand.

'30'. Turn the power on at the wall.'

31. Clean the' slip ri.ng~. (with machine. runni.ng) •.

32. Turn the machine off.

33. Apply the appropriate load tbthe pan.

34. Set microswitch.

35. Record static bending.

36. If torque is to be applied, see Procedure
r

for Operating
NASA Complex Fatigue Research Machines with Bending and

·Torque Loads.

37. Set the clock to zero.

38. Put on the bridges.

39. Record dynamic conditions.

40. Check lube and oil level.·

TO REMOVE SPECIMEN

1•. Turn power off at the wall.

2. Block up loading arm.

3.' Remove the brushes'from the slip rings - this step is
very important.

4~ Loosen both collets S9 the. specimen is free to slide.

5. Remove the bridges.

6. Remove the keys.

7. Raise one side of the toolholder using a support bolt.

8. Remove collets .and specimen.
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APPENDIX D

PROCEDURE FOR OPERATING NASA COMPLEX
FATIGUE RESEARCH MACHINES WITH

COMBINED BENDING AND TORQUE LOADS

1.' Install specimen and balance visicorder as per "Checklist."
,

2. Apply the torque to the required number of divisions, including
the bending interaction' divisions, using the Infinit-Indexer.

3. Stabilize the torque divisions as follows:

'3.1 Turn the machine by hand'for at least five cycles. You
will probably observe a decrease in the torque divisions.

3.2 Re-torque machine to desired. divisions and repeat the
process until the mean torque level remains constant.

4. Start the run and observe the mean torque divisions insuring
that it doesn't decrease. If no more than 2 divisions of
downward shift in the mean torqu~ divisions is observed, con­
tinue the run.

'5. If more than 2 divisions of shift in the mean torque level in
the downward direction is observed or if excessive upwards
drift in the mean torque divisions is observed, particularly
10 or more divisions, stop machine, remoVe pan weight, block
up bending load train, block up loading arm until level, and
remove torque by loosening in-board collet only (the side
without the strain gages). Check to see where the new torque
zero is. If the shiftin the zero is within one division of
the drift in the mean of the torque divisions, re-zero the
torque channel, re-tighten the specimen' and repeat Steps 3, 4,
5, and 6 until torque is stabilized.

6•. If'the zero shift is in excess of the drift in the mean torque
divisions initiate an investigation as to its cause.

Probable
,1.
2.

3 •.

causes may be the following:.
True change in torque beyond the intended level.
Change in strain gage characteristics, perhaps
indicating a strain gage deterioration.
Deterioration of amplifier components.



7. If the drift in the mean torque divisions is not in excess of
.10 divisions, and a few specimens at.the same stress level
check out favorably in Steps 1 thr~ugh 4, do not re-check the
zero; finish run.

\
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APPENDIX E

CALIBRATION OF NEW TORQUE GAGES FOR MACHINE #3, JUNE 1969

In May 1969, one of the strain ~ages in the torque bridge of

the toolholder of Machine #3 failed. The ~age was replaced. and

it was necessary to recalibrate. Since the bending bridge was

left untouched, the only tests which.had to be conducted were

the torque load versus visicorder output calibration and the

bending interaction into torque calibration.

The results of these tests are presented below•

. Torque Load Versus Visicorder Output

The procedure used is identical to the one presented in

Section IV-C-l. The data appears in Table 18.

Data Reduction

The same data reduction technique that was us.ed in Section

.IV-C-l is used. Figure 43 gives the plot of the data of Table

18.
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Machine Point Point W N .
VJ.s

Ibs div

Tout
psi

Ttrue
psi

slope

K.r
3 (40;0,40.0) (2.5,6.0) 37.534.0 1008 848 0.842

Therefore

= 0.842
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Bending Interaction Into Torque

For the bend~ng interaction into torque procedure, consult

Section IV-C-2. The method given there was followed,exactly

for this test. The 'data appears in Table 19.

, 'Data Reduction

Us~ng the graphical reduction technique from Iigure 44,

,Point A = (25.0, 0.73)

Point B = (35.0, l.00)

N • = -10.0
v~sB

N = + 0.27visT

N ~ R
E:B = v~sB gage =

N N G RcalB a cal

(-10.0)(190) = 12.00 vin/in
(25.0)(4)(2.23)(490)(10 3)

Therefore

Rgage
N G R 1a ca

=
(0.27)(120)

(45.3)(4)(2.06)(304)(10 3) = -.2855 Vin/ip

~/T =
-0.2855

12.00 =-0.0238 . ,



APPENDIX F

MAINTENANCE CHECKLIST

·EACH RUN
~<, /

The level of the greas~' in·rthe front shaft couplings and 'the
level of oil in the gear box shall be checked and lubrication
added if ne~ded•. The oil to be used,in, the gear box is Mobil D.
T. E. Oil - BB.

.~

Log the hours each machine has been run.

EVERY MONTH

.Check front Shaft Couplings for proper amount of Marfak #1' ,
. grease.

EVERY FOUR MONTHS

Front and back shaft couplings shall be cleaned, inspected.
and regreased with Texaco Marfak #1.

\

\
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